Menu Close

Given-a-polynomial-p-x-x-4-4x-3-2p-2-x-2-2p-5q-2-x-3q-2r-If-p-x-x-3-2x-2-8x-6-Q-x-then-what-the-value-of-p-2q-r-




Question Number 145294 by imjagoll last updated on 04/Jul/21
Given a polynomial   p(x)=x^4 +4x^3 +(2p+2)x^2 +(2p+5q+2)x+3q+2r.  If p(x)= (x^3 +2x^2 +8x+6)Q(x)   then what the value of    (p+2q)r .
Givenapolynomialp(x)=x4+4x3+(2p+2)x2+(2p+5q+2)x+3q+2r.Ifp(x)=(x3+2x2+8x+6)Q(x)thenwhatthevalueof(p+2q)r.
Answered by Rasheed.Sindhi last updated on 04/Jul/21
p(x)=x^4 +4x^3 +(2p+2)x^2 +(2p+5q+2)x+3q+2r.  If p(x)= (x^3 +2x^2 +8x+6)Q(x)   (p+2q)r =?                                            _(−)   Let Q(x)=x+k  Given: D(x)=x^3 +2x^2 +8x+6  We can also consider:  D(x)=x+k  &  Q(x)=x^3 +2x^2 +8x+6  By synthetic division :   determinant (((−k)),1,(    4),(2p+2),(2p+5q+2),(3q+2r)),(,,(−k),(    ...),(       ...),(   ...)),(,1,(   2),(   8),(       6),(    0)))   4−k=2⇒k=2   determinant (((−2)),1,(    4),(2p+2),(2p+5q+2),(3q+2r)),(,,(−2),(  −4),(     −16),( −12)),(,1,(  2),(    8),(        6),(    0)))   2p+2−4=8⇒p=5  2p+5q+2−16=6  2(5)+5q=20⇒q=2  3q+2r−12=0  3(2)+2r=12⇒r=3  (p+2q)r =( 5+2(2) )(3)=27
p(x)=x4+4x3+(2p+2)x2+(2p+5q+2)x+3q+2r.Ifp(x)=(x3+2x2+8x+6)Q(x)(p+2q)r=?LetQ(x)=x+kGiven:D(x)=x3+2x2+8x+6Wecanalsoconsider:D(x)=x+k&Q(x)=x3+2x2+8x+6Bysyntheticdivision:k)142p+22p+5q+23q+2rk128604k=2k=22)142p+22p+5q+23q+2r241612128602p+24=8p=52p+5q+216=62(5)+5q=20q=23q+2r12=03(2)+2r=12r=3(p+2q)r=(5+2(2))(3)=27
Commented by imjagoll last updated on 04/Jul/21
yes
yes
Answered by liberty last updated on 04/Jul/21
by Horner′s theorem  d(x)=x^3 +2x^2 +8x+6=0  ⇒x^3 =−2x^2 −8x−6    determinant ((∗,1,4,(2p+2),(2p+5q+2),(3q+2r)),((−2),∗,(−2),(−8),(−6),∗),((−8),∗,∗,(−4),(−16),(−12)),((−6),∗,∗,∗,∗,∗),(∗,1,2,(2p−10),(2p+5q−20),(3q+2r−12)))   we get  { ((2p−10=0→p=5)),((10+5q−20=0→q=2)),((6+2r−12=0→r=3)) :}  then (p+2q)r=(5+4)×3=27
byHornerstheoremd(x)=x3+2x2+8x+6=0x3=2x28x6142p+22p+5q+23q+2r22868416126122p102p+5q203q+2r12weget{2p10=0p=510+5q20=0q=26+2r12=0r=3then(p+2q)r=(5+4)×3=27
Commented by imjagoll last updated on 04/Jul/21
yes
yes

Leave a Reply

Your email address will not be published. Required fields are marked *