Menu Close

given-a-probability-function-f-x-1-3-1-x-4-and-f-x-0-in-other-x-find-the-value-of-2-




Question Number 81219 by jagoll last updated on 10/Feb/20
given a probability   function   f(x)= (1/3), 1≤x≤4 and f(x)=0  in other x. find the value   of σ^(2 )  ?
givenaprobabilityfunctionf(x)=13,1x4andf(x)=0inotherx.findthevalueofσ2?
Commented by jagoll last updated on 10/Feb/20
my way σ^2  = ∫_1 ^( 4) (x−μ)^2 f(x)dx  where μ= ∫ _1^4  xf(x)dx  it correct?
mywayσ2=14(xμ)2f(x)dxwhereμ=14xf(x)dxitcorrect?
Commented by Joel578 last updated on 10/Feb/20
yes
yes
Commented by Joel578 last updated on 10/Feb/20
another formula  σ_X ^2  = ∫_(−∞) ^∞  (x − μ)^2  f(x) dx         = ∫_(−∞) ^∞  (x^2  − 2xμ + μ^2 )f(x) dx         = ∫_(−∞) ^∞ x^2  f(x) dx − 2μ ∫_(−∞) ^∞ x f(x) dx + μ^2  ∫_(−∞) ^∞ f(x) dx         = ∫_(−∞) ^∞ x^2  f(x) dx − 2μ . μ + μ^2  . 1         = ∫_(−∞) ^∞  x^2  f(x) dx − μ^2          = E[X^2 ] − μ^2
anotherformulaσX2=(xμ)2f(x)dx=(x22xμ+μ2)f(x)dx=x2f(x)dx2μxf(x)dx+μ2f(x)dx=x2f(x)dx2μ.μ+μ2.1=x2f(x)dxμ2=E[X2]μ2
Commented by jagoll last updated on 10/Feb/20
o yes thank you
oyesthankyou
Answered by Joel578 last updated on 10/Feb/20
f_X (x) =  { (((1/3)   , 1 ≤ x ≤ 4)),(( 0     , elsewhere)) :}    E[X] = μ =  ∫_(−∞) ^∞  x f(x) dx = ∫_1 ^4  x((1/3)) dx = (5/2)  E[X^2 ] = ∫_(−∞) ^∞ x^2  f(x) dx = ∫_1 ^4  x^2 ((1/3)) dx = 7    σ_X ^2  = E[X^2 ] − μ^2  = 7 − ((25)/4) = (3/4)
fX(x)={13,1x40,elsewhereE[X]=μ=xf(x)dx=41x(13)dx=52E[X2]=x2f(x)dx=41x2(13)dx=7σX2=E[X2]μ2=7254=34

Leave a Reply

Your email address will not be published. Required fields are marked *