Menu Close

Given-a-R-1-1-Show-that-x-R-1-2acos-x-a-2-gt-0-2-Show-that-k-1-n-1-2acos-2kpi-n-a-2-k-1-n-a-e-2ikpi-n-a-e-2ikpi-n-3-Deduce-that-




Question Number 107500 by Ar Brandon last updated on 11/Aug/20
Given a ∈R−{±1}  1. Show that ∀x∈R 1−2acos(x)+a^2 >0  2. Show that;       Π_(k=1) ^n (1−2acos(((2kπ)/n))+a^2 )=Π_(k=1) ^n (a−e^(2ikπ/n) )(a−e^(−2ikπ/n) )  3. Deduce that;                               Π_(k=1) ^n (1−2acos(((2kπ)/n))+a^2 )=(a^n −1)^2   4.  Using Reimann′s sum, calculate                                         I=∫_0 ^(2π) ln(1−2acos(x)+a^2 )dx
GivenaR{±1}1.ShowthatxR12acos(x)+a2>02.Showthat;nk=1(12acos(2kπn)+a2)=nk=1(ae2ikπ/n)(ae2ikπ/n)3.Deducethat;nk=1(12acos(2kπn)+a2)=(an1)24.UsingReimannssum,calculateI=02πln(12acos(x)+a2)dx
Answered by Ar Brandon last updated on 11/Aug/20
1.  1−2acos(x)+a^2                   =cos^2 −2acos(x)+a^2 +sin^2 (x)                  =(cos(x)−a)^2 +sin^2 (x)>0  2.  1−2a cos((2kπ)/n)+a^2                   =(cos((2kπ)/n)−a)^2 +sin^2 ((2kπ)/n)                  =(cos((2kπ)/n)−a)^2 −(isin((2kπ)/n))^2                   =(cos((2kπ)/n)−isin((2kπ)/n)−a)(cos((2kπ)/n)+isin((2kπ)/n)−a)                  =(a−e^(2ikπ/n) )(a−e^(−2ikπ/n) )  3. See Mr 1549442205PVT ′s explanation on Q107498  4.  I=∫_0 ^(2π) ln(1−2a cos(x)+a^2 )dx          =lim_(n→∞) ((2π)/n)Σ_(k=1) ^n ln(1−2a cos(((2πk)/n))+a^2 )          =lim_(n→∞) ((2π)/n)lnΠ_(k=1) ^n (1−2a cos(((2πk)/n))+a^2 )          =lim_(n→∞) ((2π)/n)ln(a^n −1)^2 =lim_(n→∞) ((4π)/n)ln(a^n −1)          =4πlim_(n→∞) [((ln(a^n −1))/n)]=4πlim_(n→∞) [((a^n lna)/(a^n −1))]          =4πln(a)
1.12acos(x)+a2=cos22acos(x)+a2+sin2(x)=(cos(x)a)2+sin2(x)>02.12acos2kπn+a2=(cos2kπna)2+sin22kπn=(cos2kπna)2(isin2kπn)2=(cos2kπnisin2kπna)(cos2kπn+isin2kπna)=(ae2ikπ/n)(ae2ikπ/n)3.SeeMr1549442205PVTsexplanationonQ1074984.I=02πln(12acos(x)+a2)dx=limn2πnnk=1ln(12acos(2πkn)+a2)=limn2πnlnnk=1(12acos(2πkn)+a2)=limn2πnln(an1)2=limn4πnln(an1)=4πlimn[ln(an1)n]=4πlimn[anlnaan1]=4πln(a)

Leave a Reply

Your email address will not be published. Required fields are marked *