Menu Close

Given-A-t-is-an-area-bounded-between-y-x-2-tx-and-x-axis-0-lt-t-lt-2-Find-the-propability-we-choose-t-so-1-48-A-t-1-16-




Question Number 33867 by Joel578 last updated on 26/Apr/18
Given A(t) is an area bounded between   y = x^2  + tx and x−axis,  0 < t < 2  Find the propability we choose t  so (1/(48)) ≤ A(t) ≤ (1/(16))
$$\mathrm{Given}\:{A}\left({t}\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{area}\:\mathrm{bounded}\:\mathrm{between}\: \\ $$$${y}\:=\:{x}^{\mathrm{2}} \:+\:{tx}\:\mathrm{and}\:\mathrm{x}−\mathrm{axis},\:\:\mathrm{0}\:<\:{t}\:<\:\mathrm{2} \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{propability}\:\mathrm{we}\:\mathrm{choose}\:{t} \\ $$$$\mathrm{so}\:\frac{\mathrm{1}}{\mathrm{48}}\:\leqslant\:{A}\left({t}\right)\:\leqslant\:\frac{\mathrm{1}}{\mathrm{16}} \\ $$
Answered by MJS last updated on 26/Apr/18
x^2 +tx=0  x(x+t)=0  x_1 =0  x_2 =−t  ∣∫_(−t) ^0 (x^2 +tx)dx∣=∣[(x^3 /3)+((tx^2 )/2)]_(−t) ^0 ∣=∣(t^3 /3)−(t^3 /2)∣=(t^3 /6)  (1/(48))≤(t^3 /6)≤(1/(16))  (1/8)≤t^3 ≤(3/8)  (1/2)≤t≤((3)^(1/3) /2)  ((((3)^(1/3) /2)−(1/2))/2)=(((3)^(1/3) −1)/4)≈.1106 ⇒ 11.06%
$${x}^{\mathrm{2}} +{tx}=\mathrm{0} \\ $$$${x}\left({x}+{t}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =\mathrm{0} \\ $$$${x}_{\mathrm{2}} =−{t} \\ $$$$\mid\underset{−{t}} {\overset{\mathrm{0}} {\int}}\left({x}^{\mathrm{2}} +{tx}\right){dx}\mid=\mid\left[\frac{{x}^{\mathrm{3}} }{\mathrm{3}}+\frac{{tx}^{\mathrm{2}} }{\mathrm{2}}\underset{−{t}} {\overset{\mathrm{0}} {\right]}}\mid=\mid\frac{{t}^{\mathrm{3}} }{\mathrm{3}}−\frac{{t}^{\mathrm{3}} }{\mathrm{2}}\mid=\frac{{t}^{\mathrm{3}} }{\mathrm{6}} \\ $$$$\frac{\mathrm{1}}{\mathrm{48}}\leqslant\frac{{t}^{\mathrm{3}} }{\mathrm{6}}\leqslant\frac{\mathrm{1}}{\mathrm{16}} \\ $$$$\frac{\mathrm{1}}{\mathrm{8}}\leqslant{t}^{\mathrm{3}} \leqslant\frac{\mathrm{3}}{\mathrm{8}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\leqslant{t}\leqslant\frac{\sqrt[{\mathrm{3}}]{\mathrm{3}}}{\mathrm{2}} \\ $$$$\frac{\frac{\sqrt[{\mathrm{3}}]{\mathrm{3}}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{2}}=\frac{\sqrt[{\mathrm{3}}]{\mathrm{3}}−\mathrm{1}}{\mathrm{4}}\approx.\mathrm{1106}\:\Rightarrow\:\mathrm{11}.\mathrm{06\%} \\ $$
Commented by Joel578 last updated on 26/Apr/18
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *