Menu Close

Given-A-t-is-an-area-bounded-between-y-x-2-tx-and-x-axis-0-lt-t-lt-2-Find-the-propability-we-choose-t-so-1-48-A-t-1-16-




Question Number 33867 by Joel578 last updated on 26/Apr/18
Given A(t) is an area bounded between   y = x^2  + tx and x−axis,  0 < t < 2  Find the propability we choose t  so (1/(48)) ≤ A(t) ≤ (1/(16))
GivenA(t)isanareaboundedbetweeny=x2+txandxaxis,0<t<2Findthepropabilitywechoosetso148A(t)116
Answered by MJS last updated on 26/Apr/18
x^2 +tx=0  x(x+t)=0  x_1 =0  x_2 =−t  ∣∫_(−t) ^0 (x^2 +tx)dx∣=∣[(x^3 /3)+((tx^2 )/2)]_(−t) ^0 ∣=∣(t^3 /3)−(t^3 /2)∣=(t^3 /6)  (1/(48))≤(t^3 /6)≤(1/(16))  (1/8)≤t^3 ≤(3/8)  (1/2)≤t≤((3)^(1/3) /2)  ((((3)^(1/3) /2)−(1/2))/2)=(((3)^(1/3) −1)/4)≈.1106 ⇒ 11.06%
x2+tx=0x(x+t)=0x1=0x2=tMissing \left or extra \right148t3611618t33812t332332122=3314.110611.06%
Commented by Joel578 last updated on 26/Apr/18
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *