Menu Close

Given-and-are-the-roots-of-x-3-px-2-qx-pq-0-Find-the-value-of-




Question Number 116221 by bobhans last updated on 02/Oct/20
Given α,β and ϕ are the roots of   x^3 −px^2 +qx−pq = 0 .  Find the value of (α/β)+(β/α)+(β/ϕ)+(ϕ/β)+(α/ϕ)+(ϕ/α)=?
Givenα,βandφaretherootsofx3px2+qxpq=0.Findthevalueofαβ+βα+βφ+φβ+αφ+φα=?
Answered by TANMAY PANACEA last updated on 02/Oct/20
((β/α)+(ϕ/α)+1)+((α/β)+(ϕ/β)+1)+((α/ϕ)+(β/ϕ)+1)−3  =(α+β+ϕ)((1/α)+(1/β)+(1/ϕ))−3  =(α+β+ϕ)(((αβ+βϕ+αϕ)/(αβϕ)))−3  =p((q/(pq)))−3=−2
(βα+φα+1)+(αβ+φβ+1)+(αφ+βφ+1)3=(α+β+φ)(1α+1β+1φ)3=(α+β+φ)(αβ+βφ+αφαβφ)3=p(qpq)3=2
Answered by ruwedkabeh last updated on 02/Oct/20
(α/β)+(β/α)+(β/ϕ)+(ϕ/β)+(α/ϕ)+(ϕ/α)  =((α^2 ϕ+β^2 ϕ+αβ^2 +αϕ^2 +α^2 β+βϕ^2 )/(αβϕ))  =(((α+β+ϕ)(αβ+αϕ+βϕ)−3αβϕ)/(αβϕ))  =(((p)(q)−3pq)/(pq))  =−2
αβ+βα+βφ+φβ+αφ+φα=α2φ+β2φ+αβ2+αφ2+α2β+βφ2αβφ=(α+β+φ)(αβ+αφ+βφ)3αβφαβφ=(p)(q)3pqpq=2
Answered by bobhans last updated on 02/Oct/20

Leave a Reply

Your email address will not be published. Required fields are marked *