Menu Close

Given-and-are-the-roots-of-x-3-px-2-qx-pq-0-Find-the-value-of-




Question Number 116221 by bobhans last updated on 02/Oct/20
Given α,β and ϕ are the roots of   x^3 −px^2 +qx−pq = 0 .  Find the value of (α/β)+(β/α)+(β/ϕ)+(ϕ/β)+(α/ϕ)+(ϕ/α)=?
$$\mathrm{Given}\:\alpha,\beta\:\mathrm{and}\:\varphi\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\: \\ $$$$\mathrm{x}^{\mathrm{3}} −\mathrm{px}^{\mathrm{2}} +\mathrm{qx}−\mathrm{pq}\:=\:\mathrm{0}\:. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+\frac{\beta}{\varphi}+\frac{\varphi}{\beta}+\frac{\alpha}{\varphi}+\frac{\varphi}{\alpha}=? \\ $$
Answered by TANMAY PANACEA last updated on 02/Oct/20
((β/α)+(ϕ/α)+1)+((α/β)+(ϕ/β)+1)+((α/ϕ)+(β/ϕ)+1)−3  =(α+β+ϕ)((1/α)+(1/β)+(1/ϕ))−3  =(α+β+ϕ)(((αβ+βϕ+αϕ)/(αβϕ)))−3  =p((q/(pq)))−3=−2
$$\left(\frac{\beta}{\alpha}+\frac{\varphi}{\alpha}+\mathrm{1}\right)+\left(\frac{\alpha}{\beta}+\frac{\varphi}{\beta}+\mathrm{1}\right)+\left(\frac{\alpha}{\varphi}+\frac{\beta}{\varphi}+\mathrm{1}\right)−\mathrm{3} \\ $$$$=\left(\alpha+\beta+\varphi\right)\left(\frac{\mathrm{1}}{\alpha}+\frac{\mathrm{1}}{\beta}+\frac{\mathrm{1}}{\varphi}\right)−\mathrm{3} \\ $$$$=\left(\alpha+\beta+\varphi\right)\left(\frac{\alpha\beta+\beta\varphi+\alpha\varphi}{\alpha\beta\varphi}\right)−\mathrm{3} \\ $$$$={p}\left(\frac{{q}}{{pq}}\right)−\mathrm{3}=−\mathrm{2} \\ $$
Answered by ruwedkabeh last updated on 02/Oct/20
(α/β)+(β/α)+(β/ϕ)+(ϕ/β)+(α/ϕ)+(ϕ/α)  =((α^2 ϕ+β^2 ϕ+αβ^2 +αϕ^2 +α^2 β+βϕ^2 )/(αβϕ))  =(((α+β+ϕ)(αβ+αϕ+βϕ)−3αβϕ)/(αβϕ))  =(((p)(q)−3pq)/(pq))  =−2
$$\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+\frac{\beta}{\varphi}+\frac{\varphi}{\beta}+\frac{\alpha}{\varphi}+\frac{\varphi}{\alpha} \\ $$$$=\frac{\alpha^{\mathrm{2}} \varphi+\beta^{\mathrm{2}} \varphi+\alpha\beta^{\mathrm{2}} +\alpha\varphi^{\mathrm{2}} +\alpha^{\mathrm{2}} \beta+\beta\varphi^{\mathrm{2}} }{\alpha\beta\varphi} \\ $$$$=\frac{\left(\alpha+\beta+\varphi\right)\left(\alpha\beta+\alpha\varphi+\beta\varphi\right)−\mathrm{3}\alpha\beta\varphi}{\alpha\beta\varphi} \\ $$$$=\frac{\left({p}\right)\left({q}\right)−\mathrm{3}{pq}}{{pq}} \\ $$$$=−\mathrm{2} \\ $$$$ \\ $$
Answered by bobhans last updated on 02/Oct/20

Leave a Reply

Your email address will not be published. Required fields are marked *