Menu Close

Given-and-N-such-that-I-1-t-1-t-dt-show-that-I-1-




Question Number 89343 by Ar Brandon last updated on 17/Apr/20
Given α and β ∈N such that  I(α,β)=∫_ ^1 t^α (1−t)^β dt  show that  I(α;β)=((α!β!)/((α+β+1)!))
$${Given}\:\alpha\:{and}\:\beta\:\in\mathbb{N}\:{such}\:{that} \\ $$$${I}\left(\alpha,\beta\right)=\int_{} ^{\mathrm{1}} {t}^{\alpha} \left(\mathrm{1}−{t}\right)^{\beta} {dt} \\ $$$${show}\:{that} \\ $$$${I}\left(\alpha;\beta\right)=\frac{\alpha!\beta!}{\left(\alpha+\beta+\mathrm{1}\right)!} \\ $$
Commented by abdomathmax last updated on 17/Apr/20
sir brandon this question is solved take a look  at the platform...
$${sir}\:{brandon}\:{this}\:{question}\:{is}\:{solved}\:{take}\:{a}\:{look} \\ $$$${at}\:{the}\:{platform}… \\ $$
Commented by Ar Brandon last updated on 17/Apr/20
I got it thanks
$${I}\:{got}\:{it}\:{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *