Menu Close

Given-any-positive-integer-n-show-that-there-are-two-positive-rational-numbers-a-and-b-a-b-which-are-not-integers-and-which-are-such-that-a-b-a-2-b-2-a-3-b-3-a-n-b-n-are-al




Question Number 22080 by Tinkutara last updated on 10/Oct/17
Given any positive integer n show  that there are two positive rational  numbers a and b, a ≠ b, which are not  integers and which are such that a − b,  a^2  − b^2 , a^3  − b^3 , ....., a^n  − b^n  are all  integers.
Givenanypositiveintegernshowthattherearetwopositiverationalnumbersaandb,ab,whicharenotintegersandwhicharesuchthatab,a2b2,a3b3,..,anbnareallintegers.
Commented by Rasheed.Sindhi last updated on 11/Oct/17
For n=2   a−b,a^2 −b^2 ∈Z ⇒ a+b ∈Z    [∵ a^2 −b^2 =(a−b)(a+b)]  (7/2)−(1/2)=3  ((7/2))^2 −((1/2))^2 =((49)/4)−(1/4)=12  a−b,a+b∈Z⇒a^2 −b^2 ∈Z ;a,b∈Q  For n=3  a−b∈Z  a^2 −b^2 =(a−b)(a+b)∈Z   ⇒a+b∈Z  a^3 −b^3 =(a−b)(a^2 +ab+b^2 )∈Z     ⇒a^2 +ab+b^2 ∈Z  ⋮
Forn=2ab,a2b2Za+bZ[a2b2=(ab)(a+b)]7212=3(72)2(12)2=49414=12ab,a+bZa2b2Z;a,bQForn=3abZa2b2=(ab)(a+b)Za+bZa3b3=(ab)(a2+ab+b2)Za2+ab+b2Z

Leave a Reply

Your email address will not be published. Required fields are marked *