Menu Close

Given-b-n-3-2-n-is-a-GP-find-the-value-of-1-b-1-1-b-2-1-b-3-1-b-10-




Question Number 103670 by bobhans last updated on 16/Jul/20
Given b_n  = 3.2^n  is a GP . find the value  of (1/b_1 )+(1/b_2 )+(1/b_3 )+...+(1/b_(10) ) ?
Givenbn=3.2nisaGP.findthevalueof1b1+1b2+1b3++1b10?
Answered by bramlex last updated on 16/Jul/20
(1/(3.2)) + (1/(3.4))+(1/(3.8))+...+(1/(3.2^(10) )) =  (1/3){(1/2)+(1/4)+(1/8)+...+(1/2^(10) )} =  (1/3){(1/2). ((((1−((1/2))^(10) )/(1/2)))}=  (1/3).{((2^(10) −1)/2^(10) )} = ((1023)/(3×1024))=((341)/(1024)) ⊛
13.2+13.4+13.8++13.210=13{12+14+18++1210}=13{12.((1(12)1012)}=13.{2101210}=10233×1024=3411024
Answered by Worm_Tail last updated on 16/Jul/20
b_n =3.2^n ⇒(1/b_n )=(1/(3(2)^n ))       Σ(1/b_n )=Σ(1/(3(2)^n ))=(1/3)Σ((1/2))^n        Σ(1/b_n )=(1/3)Σ((1/2))^n =(1/6)(((1−2^(−n) )/(0.5)))       Σ(1/b_n )=(1/3)(1−2^(−n) )     n=10       Σ(1/b_n )=(1/3)(1−2^(−10) )    =((341)/(1024))
bn=3.2n1bn=13(2)nΣ1bn=Σ13(2)n=13Σ(12)nΣ1bn=13Σ(12)n=16(12n0.5)Σ1bn=13(12n)n=10Σ1bn=13(1210)=3411024
Answered by Dwaipayan Shikari last updated on 16/Jul/20
(1/(3.2))+(1/(3.2^2 ))+(1/(3.2^3 ))+...+n=(1/3).(1/2)(((((1/2))^n −1)/((1/2)−1)))=(1/3)(1−2^(−n) )=(1/3).((1023)/(1024))=((341)/(1024))
13.2+13.22+13.23++n=13.12((12)n1121)=13(12n)=13.10231024=3411024
Answered by mathmax by abdo last updated on 16/Jul/20
Σ_(k=1) ^(10)  (1/b_k ) =Σ_(k=1) ^(10)  (1/(3.2^k )) =(1/6)Σ_(k=1) ^(10)  (1/2^(k−1) ) =(1/6)Σ_(k=0) ^9  ((1/2))^k   =(1/6)×((1−((1/2))^(10) )/(1−(1/2))) =(1/3){1−(1/2^(10) )} =(1/3)−(1/(3.2^(10) ))
k=1101bk=k=11013.2k=16k=11012k1=16k=09(12)k=16×1(12)10112=13{11210}=1313.210

Leave a Reply

Your email address will not be published. Required fields are marked *