Menu Close

Given-complex-number-z-1-z-2-and-z-3-satiesfied-z-1-z-2-z-3-0-and-z-1-z-2-z-3-1-Prove-that-z-1-2-z-2-2-z-3-2-0-




Question Number 56146 by gunawan last updated on 11/Mar/19
Given complex number  z_1 , z_2 , and z_3  satiesfied z_1 +z_2 +z_3 =0  and ∣z_1 ∣=∣z_2 ∣=∣z_3 ∣=1. Prove that  z_1 ^2 +z_2 ^2 +z_3 ^2 =0
Givencomplexnumberz1,z2,andz3satiesfiedz1+z2+z3=0andz1∣=∣z2∣=∣z3∣=1.Provethatz12+z22+z32=0
Commented by MJS last updated on 11/Mar/19
z_1 , z_2 , z_3  are the solutions of  z^3 =cos 3α +isin 3α  z^3 =e^(3iα)  ⇒ z_1 =e^(iα) ; z_2 =e^(i(α−((2π)/3))) ; z_3 =e^(i(α+((2π)/3)))
z1,z2,z3arethesolutionsofz3=cos3α+isin3αz3=e3iαz1=eiα;z2=ei(α2π3);z3=ei(α+2π3)
Answered by MJS last updated on 11/Mar/19
we can choose z_3 =1+0i  z_1 =a+bi  z_2 =c+di  (1)  a+c+1=0  (2)  b+d=0  (3)  a^2 +b^2 =1  (4)  c^2 +d^2 =1    (1) ⇒ c=−(a+1)  (2) ⇒ d=−b  (3)  a^2 +b^2 =1  (4)  a^2 +2a+b^2 +1=1  (4)−(3)  2a+1=0 ⇒ a=−(1/2) ⇒ c=−(1/2)  ⇒ b^2 =(3/4) ⇒ b=±((√3)/2) ⇒ d=∓((√3)/2)  ⇒ z_1 =−(1/2)±((√3)/2); z_2 =−(1/2)∓((√3)/2)  ⇒ z_1 ^2 =z_2 ; z_2 ^2 =z_1  ⇒ z_1 ^2 +z_2 ^2 +z_3 ^2 =0  we have got the roots of unity ⇒ for any  given z_3 =cos α +isin α we get  z_(1, 2) =cos (α±((2π)/3)) +isin (α±((2π)/3))  because it′s just a rotation by α  the sum of the squares is zero which can be  shown by adding them and using trigonometric  formulas for additions etc.
wecanchoosez3=1+0iz1=a+biz2=c+di(1)a+c+1=0(2)b+d=0(3)a2+b2=1(4)c2+d2=1(1)c=(a+1)(2)d=b(3)a2+b2=1(4)a2+2a+b2+1=1(4)(3)2a+1=0a=12c=12b2=34b=±32d=32z1=12±32;z2=1232z12=z2;z22=z1z12+z22+z32=0wehavegottherootsofunityforanygivenz3=cosα+isinαwegetz1,2=cos(α±2π3)+isin(α±2π3)becauseitsjustarotationbyαthesumofthesquaresiszerowhichcanbeshownbyaddingthemandusingtrigonometricformulasforadditionsetc.

Leave a Reply

Your email address will not be published. Required fields are marked *