Menu Close

Given-f-0-2-R-f-x-is-twice-derivable-and-f-0-f-1-f-2-0-i-Show-that-there-exist-c-1-c-2-such-that-f-c-1-0-and-f-c-2-0-ii-Show-that-there-exist-c-3-such-that-f-c-3-0-




Question Number 100388 by Ar Brandon last updated on 26/Jun/20
       Given f:[0,2]→R , f(x) is twice derivable and   f(0)=f(1)=f(2)=0  i-Show that there exist c_1 , c_2 , such that f′(c_1 )=0   and f′(c_2 )=0  ii-Show that there exist c_3  such that f′′(c_3 )=0
Givenf:[0,2]R,f(x)istwicederivableandf(0)=f(1)=f(2)=0iShowthatthereexistc1,c2,suchthatf(c1)=0andf(c2)=0iiShowthatthereexistc3suchthatf(c3)=0
Answered by maths mind last updated on 26/Jun/20
f(0)=f(1)⇒∃c∈]0,1[,  f′(c_1 )=0  f(1)=f(2)⇒∃c_2 ∈]1,2[ f′(c_2 )=0  let f′(x) over [c_1 ,c_2 ]   f′(c_1 )=f′(c_2 )⇒∃c_3 ∈[c_1 ,c_2 ]such f′′(c_3 )=0  i used if f continus differentiabl over [a,b] such  f(a)=f(b)⇒∃c∈[a,b] such f′(c)=0.Roll theorem
f(0)=f(1)c]0,1[,f(c1)=0f(1)=f(2)c2]1,2[f(c2)=0letf(x)over[c1,c2]f(c1)=f(c2)c3[c1,c2]suchf(c3)=0iusediffcontinusdifferentiablover[a,b]suchf(a)=f(b)c[a,b]suchf(c)=0.Rolltheorem
Commented by DGmichael last updated on 26/Jun/20
��very good.
Commented by Ar Brandon last updated on 26/Jun/20
Thanks ��
Commented by Ar Brandon last updated on 26/Jun/20
Ouaye DG, dès que ce monsieur se connecte oulala !�� On dirait une machine qui venait d'être activée.����

Leave a Reply

Your email address will not be published. Required fields are marked *