Menu Close

Given-f-2-cos-2-2-sin-2-find-maximum-value-minimum-value-




Question Number 116433 by bemath last updated on 04/Oct/20
Given f(θ) = 2^(cos^2 (θ))  + 2^(sin^2 (θ))   find  { ((maximum value)),((minimum value)) :}
Givenf(θ)=2cos2(θ)+2sin2(θ)find{maximumvalueminimumvalue
Answered by bobhans last updated on 04/Oct/20
⇒ f(θ) = 2^(1−sin^2 (θ))  + 2^(sin^2 (θ))   let 2^(sin^2 (θ))  = t ⇒f(t)= (2/t)+t  first step →ln t = sin^2 (θ).ln (2)  (1/t) (dt/dθ) = sin (2θ).ln (2)  (dt/dθ) = (sin 2θ. ln (2)).t  Now f ′(t) = {1−(2/t^2 ) }.{sin (2θ).ln (2))t  taking f ′(t) = 0  we get  { ((2t^2 −2=0→(t−1)(t+1)=0)),((t = 0 (rejected),because t >0)),((sin 2θ=0⇒θ=(k+1).(π/2))) :}  case(1) for t = 1 →f(θ) = 3 (max)  case(2) for θ=(π/2)→f(θ)=2^0 +2^1 = 3 (max)  minimum value we get when 2^(cos^2 (θ))  = 2^(cos^2 (θ))   ⇒sin^2 (θ)=cos^2 (θ) or tan^2 (θ)=1  ⇒ θ = (π/4), ((3π)/4),... . Thus minimum   value of f(θ) = 2^(sin^2 ((π/4)))  + 2^(cos^2 ((π/4)))  = 2(√2)
f(θ)=21sin2(θ)+2sin2(θ)let2sin2(θ)=tf(t)=2t+tfirststeplnt=sin2(θ).ln(2)1tdtdθ=sin(2θ).ln(2)dtdθ=(sin2θ.ln(2)).tNowf(t)={12t2}.{sin(2θ).ln(2))ttakingf(t)=0weget{2t22=0(t1)(t+1)=0t=0(rejected),becauset>0sin2θ=0θ=(k+1).π2case(1)fort=1f(θ)=3(max)case(2)forθ=π2f(θ)=20+21=3(max)minimumvaluewegetwhen2cos2(θ)=2cos2(θ)sin2(θ)=cos2(θ)ortan2(θ)=1θ=π4,3π4,.Thusminimumvalueoff(θ)=2sin2(π4)+2cos2(π4)=22
Commented by bemath last updated on 04/Oct/20
Answered by Dwaipayan Shikari last updated on 04/Oct/20
Minimum  ((2^(sin^2 θ) +2^(cos^2 θ) )/2)≥(√2^(sin^2 θ+cos^2 θ) )  2^(sin^2 θ) +2^(cos^2 θ) ≥2(√2)  Minimum is 2(√2)
Minimum2sin2θ+2cos2θ22sin2θ+cos2θ2sin2θ+2cos2θ22Minimumis22

Leave a Reply

Your email address will not be published. Required fields are marked *