Menu Close

Given-f-E-F-g-F-G-E-F-and-G-are-sets-Show-that-if-f-and-g-are-bijectives-then-g-f-is-bijective-and-g-f-1-f-1-g-1-




Question Number 165576 by mathocean1 last updated on 04/Feb/22
Given f: E→F ; g: F→G .  E; F  and G are sets.  Show that if f and g are bijectives  then g○f is bijective and   (g○f)^(−1) =f^(−1) ○g^(−1)
Givenf:EF;g:FG.E;FandGaresets.Showthatiffandgarebijectivesthengfisbijectiveand(gf)1=f1g1
Answered by aleks041103 last updated on 04/Feb/22
  f is bij. ⇔f is inj. and surj.  let h=g○f:E→G    1. h is surj.  h(E)=g(f(E))  f − surj.⇒f(E)=F  h(E)=g(F)  g − surj.⇒g(F)=G  ⇒h(E)=G  ⇒h is surj.  2. h is inj.  take any x∈G.  g is bij.⇒!∃y∈F, g(y)=x  f is bij.⇒!∃z∈E, f(z)=y  ⇒x=g(y)=g(f(z))=h(z)  ⇒∀x∈G, !∃z∈E, h(z)=x  ⇒h is inj.    ⇒ h is bij.
fisbij.fisinj.andsurj.leth=gf:EG1.hissurj.h(E)=g(f(E))fsurj.f(E)=Fh(E)=g(F)gsurj.g(F)=Gh(E)=Ghissurj.2.hisinj.takeanyxG.gisbij.!yF,g(y)=xfisbij.!zE,f(z)=yx=g(y)=g(f(z))=h(z)xG,!zE,h(z)=xhisinj.hisbij.
Answered by aleks041103 last updated on 04/Feb/22
e=f^(−1) ○f=f^(−1) ○e○f=f^(−1) ○g^(−1) ○g○f=  =(f^(−1) ○g^(−1) )○h=e  ⇒h^(−1) =(g○f)^(−1) =f^(−1) ○g^(−1)
e=f1f=f1ef=f1g1gf==(f1g1)h=eh1=(gf)1=f1g1

Leave a Reply

Your email address will not be published. Required fields are marked *