Menu Close

Given-f-R-R-and-g-R-R-where-f-x-x-3-3-and-g-x-2x-1-Find-the-value-of-f-1-g-1-23-




Question Number 118960 by bramlexs22 last updated on 21/Oct/20
 Given f: R→R and g: R→R  where f(x)=x^3 +3 and g(x)=2x+1. Find  the value of f^(−1) (g^(−1) (23)).
$$\:{Given}\:{f}:\:{R}\rightarrow{R}\:{and}\:{g}:\:{R}\rightarrow{R} \\ $$$${where}\:{f}\left({x}\right)={x}^{\mathrm{3}} +\mathrm{3}\:{and}\:{g}\left({x}\right)=\mathrm{2}{x}+\mathrm{1}.\:{Find} \\ $$$${the}\:{value}\:{of}\:{f}^{−\mathrm{1}} \left({g}^{−\mathrm{1}} \left(\mathrm{23}\right)\right). \\ $$
Answered by benjo_mathlover last updated on 21/Oct/20
let f^(−1) (g^(−1) (23))= q  then g^(−1) (23) = f(q) or g(f(q))=23  g(q^3 +3)=23 ⇒2(q^3 +3)+1= 23  2q^3  + 7 = 23 , q = (8)^(1/(3 ))  = 2.   Hence f^(−1) (g^(−1) (23))= 2
$${let}\:{f}^{−\mathrm{1}} \left({g}^{−\mathrm{1}} \left(\mathrm{23}\right)\right)=\:{q} \\ $$$${then}\:{g}^{−\mathrm{1}} \left(\mathrm{23}\right)\:=\:{f}\left({q}\right)\:{or}\:{g}\left({f}\left({q}\right)\right)=\mathrm{23} \\ $$$${g}\left({q}^{\mathrm{3}} +\mathrm{3}\right)=\mathrm{23}\:\Rightarrow\mathrm{2}\left({q}^{\mathrm{3}} +\mathrm{3}\right)+\mathrm{1}=\:\mathrm{23} \\ $$$$\mathrm{2}{q}^{\mathrm{3}} \:+\:\mathrm{7}\:=\:\mathrm{23}\:,\:{q}\:=\:\sqrt[{\mathrm{3}\:}]{\mathrm{8}}\:=\:\mathrm{2}.\: \\ $$$${Hence}\:{f}^{−\mathrm{1}} \left({g}^{−\mathrm{1}} \left(\mathrm{23}\right)\right)=\:\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *