Given-f-R-R-such-that-x-2-f-x-f-1-x-2x-x-4-find-f-x- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 122074 by bemath last updated on 13/Nov/20 Givenf:R→Rsuchthatx2f(x)+f(1−x)=2x−x4findf(x). Answered by bobhans last updated on 14/Nov/20 (1)x2f(x)+f(1−x)=2x−x4replacingxby1−xgive→(1−x)2f(1−x)+f(x)=2(1−x)−(1−x)4multiplyeq(1)with(1−x)2give(2)→(1−x)2f(1−x)+(1−x)2x2f(x)=(1−x)2(2x−x4)substract(1)by(2)give{1−x2(1−x)2}f(x)=(2−2x)−(1−x4)−(1−x)2(2x−x4)∵f(x)(2−2x)−(1−x4)−(1−x)2(2x−2x4)1−x2(1−x)2 Answered by mathmax by abdo last updated on 14/Nov/20 ⇒x2f(x)+f(1−x)=−x4+2xletchangexby1−x⇒(1−x)2f(1−x)+f(x)=2(1−x)−(1−x)4wegetthesystem{x2f(x)+f(1−x)=2x−x4f(x)+(1−x)2f(1−x)=2(1−x)−(1−x)4Δs=x2(1−x)2−1⇒(x−x2)2−1=x2−2x3+x4−1⇒f(x)=|2x−x412(1−x)−(1−x)4(1−x)2|x4−2x3+x2−1⇒f(x)=(2x−x4)(1−x)2−2(1−x)+(1−x)4x4−2x3+x2−1 Answered by ajfour last updated on 14/Nov/20 x2f(x)+f(1−x)=2x−x4(1−x)2f(1−x)+f(x)=2(1−x)−(1−x)4f(x)=(1−x)2(2x−x4)−2(1−x)+(1−x)4x2(1−x)2−1=(1−x){(1−x)(2x−x4)−2+(1−x)3}{x(1−x)−1}{x(1−x)+1}=(1−x)(x5−x4−x3+x2−x−1){x(1−x)−1}{x(1−x)+1}=(1−x)(x3+1)(x2−x−1)(x2−x+1)(x2−x−1)f(x)=(1−x)(1+x)(x2−x+1)x2−x+1⇒f(x)=1−x2★ Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-187608Next Next post: Question-56540 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.