Menu Close

Given-f-x-0-1-f-x-dx-x-2-0-2-f-x-dx-x-0-3-f-x-dx-1-then-the-value-of-f-4-




Question Number 123386 by bemath last updated on 25/Nov/20
 Given   f(x)=(∫_0 ^1 f(x)dx)x^2 +(∫_0 ^2 f(x)dx)x+(∫_0 ^3 f(x)dx)+1  then the value of f(4) = ...
Givenf(x)=(10f(x)dx)x2+(20f(x)dx)x+(30f(x)dx)+1thenthevalueoff(4)=
Answered by TANMAY PANACEA last updated on 25/Nov/20
f(x)=ax^2 +bx+c+1  a=∫_0 ^1 (ax^2 +bx+c+1)  dx  a=∣((ax^3 )/3)+((bx^2 )/2)+cx+x∣_0 ^1   a=(a/3)+(b/2)+c+1.....(1st eqn)  b=∣((ax^3 )/3)+((bx^2 )/2)+cx+x∣_0 ^2   b=((8a)/3)+((4b)/2)+2c+2....+(2nd eqn)  c=∣((ax^3 )/3)+((bx^2 )/2)+cx+x∣_0 ^3   c=((27a)/3)+((9b)/4)+3c+3....(3rd eqn)  we have to solve  to find (a,b and c)  f(x)=ax^2 +bx+c+1  nxt to put x=4    pls try from here..
f(x)=ax2+bx+c+1a=01(ax2+bx+c+1)dxa=∣ax33+bx22+cx+x01a=a3+b2+c+1..(1steqn)b=∣ax33+bx22+cx+x02b=8a3+4b2+2c+2.+(2ndeqn)c=∣ax33+bx22+cx+x03c=27a3+9b4+3c+3.(3rdeqn)wehavetosolvetofind(a,bandc)f(x)=ax2+bx+c+1nxttoputx=4plstryfromhere..

Leave a Reply

Your email address will not be published. Required fields are marked *