Given-f-x-0-1-x-y-2-f-y-dy-2x-2-3x-1-find-f-x- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 189066 by cortano12 last updated on 11/Mar/23 Givenf(x)+∫10(x+y)2f(y)dy=2x2−3x+1findf(x). Answered by horsebrand11 last updated on 11/Mar/23 2x2−3x+1=f(x)+∫10(x2+2xy+y2)dy2x2−3x+1=f(x)+x2∫10f(y)dy+2x∫10yf(y)dy+∫10y2f(y)dylet{p=∫10f(y)dyq=∫10yf(y)dyr=∫10y2f(y)dyf(x)=2x2−px2−3x−2qx+1−rf(x)=(2−p)x2−(3+2q)x+(1−r) Answered by mr W last updated on 11/Mar/23 f(x)+∫01(x+y)2f(y)dy=2x2−3x+1f(x)+∫01(x2+2xy+y2)f(y)dy=2x2−3x+1f(x)+x2∫01f(y)dy+2x∫01yf(y)dy+∫01y2f(y)dy=2x2−3x+1f(x)+Ax2+2Bx+C=2x2−3x+1⇒f(x)=(2−A)x2−(3+2B)x+(1−C)A=∫01f(y)dy=∫01[(2−A)y2−(3+2B)y+(1−C)]dyA=(2−A)13−(3+2B)12+(1−C)⇒8A+6B+6C=1…(i)B=∫01yf(y)dy=∫01[(2−A)y3−(3+2B)y2+(1−C)y]dyB=(2−A)14−(3+2B)13+(1−C)12⇒3A+20B+6C=0…(ii)C=∫01y2f(y)dy=∫01[(2−A)y4−(3+2B)y3+(1−C)y2]dyC=(2−A)15−(3+2B)14+(1−C)13⇒12A+30B+80C=−1…(iii)from(i),(ii),(iii):A=71453,B=−7453,C=−3561359⇒f(x)=835x2453−1345x453+17151359 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-57992Next Next post: Question-189070 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.