Menu Close

Given-f-x-0-x-dt-1-t-3-and-g-x-be-the-inverse-function-of-f-x-then-g-x-g-2-x-then-the-value-of-




Question Number 114878 by bobhans last updated on 21/Sep/20
Given f(x) = ∫_0 ^x  (dt/( (√(1+t^3 )))) and g(x) be the  inverse function of f(x), then g ′′(x)=λg^2 (x).  then the value of λ =
Givenf(x)=x0dt1+t3andg(x)betheinversefunctionoff(x),theng(x)=λg2(x).thenthevalueofλ=
Answered by Olaf last updated on 21/Sep/20
gof(x) = x  f′(x)×g′of(x) = 1  g′of(x) = (1/(f′(x))) = (√(1+x^3 ))  f′(x)×g′′of(x) = ((3x^2 )/(2(√(1+x^3 ))))  g′′of(x) = (1/(f′(x)))[((3x^2 )/(2(√(1+x^3 ))))]  g′′of(x) = (√(1+x^3 ))[((3x^2 )/(2(√(1+x^3 ))))]  g′′of(x) = (3/2)x^2   g′′of(x) = (3/2)[gof(x)]^2   Let y = f(x)  g′′(y) = (3/2)g^2 (y)  g′′(y) = λg^2 (y) with λ = (3/2)
gof(x)=xf(x)×gof(x)=1gof(x)=1f(x)=1+x3f(x)×gof(x)=3x221+x3gof(x)=1f(x)[3x221+x3]gof(x)=1+x3[3x221+x3]gof(x)=32x2gof(x)=32[gof(x)]2Lety=f(x)g(y)=32g2(y)g(y)=λg2(y)withλ=32
Answered by PRITHWISH SEN 2 last updated on 21/Sep/20
f^′ (x)= (1/( (√(1+x^3 ))))     now, g^′ (x)= (1/(f^′ {g(x)}))  g′(x)= (√(1+{g(x)}^3 ))  g^(′′) (x)= (1/(2(√(1+{g(x)}^3 )))) . 3g^2 (x).g^′ (x)    λg^2 (x) = (1/(2g′(x))).3g^2 (x).g^′ (x)    λ= (3/2)
f(x)=11+x3now,g(x)=1f{g(x)}g(x)=1+{g(x)}3g(x)=121+{g(x)}3.3g2(x).g(x)λg2(x)=12g(x).3g2(x).g(x)λ=32

Leave a Reply

Your email address will not be published. Required fields are marked *