Given-f-x-0-x-dt-f-t-2-and-0-2-dt-f-t-2-6-1-3-Then-then-the-value-of-f-9-is- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 118663 by benjo_mathlover last updated on 19/Oct/20 Givenf(x)=∫x0dt[f(t)]2and∫20dt[f(t)]2=63Thenthenthevalueoff(9)is__ Commented by mr W last updated on 19/Oct/20 f′(x)=1(f(x))2y2dy=dxy33=x+C3y3=3x+C(63)3=3×2+C⇒C=0⇒y3=3x⇒y=f(x)=3x3f(9)=3×93=3 Commented by 1549442205PVT last updated on 19/Oct/20 Great!Sir. Answered by benjo_mathlover last updated on 19/Oct/20 byTheoremFundamentalCalculus−1f′(x)=∫x0f(t)dt.Givenequationf(x)=∫x0dt[f(t)]2⇒f′(x)=1[f(x)]2⇒[f(x)]2d(f(x))=dx,integratingbothsides∫[f(x)]2dx=∫dx13[f(x)]3=x+C⇒sof(x)=3x+λ3,λ=3Cthus∫02dt[f(t)]2=f(2)=63wegetf(2)=6+λ3=63,giveλ=0Thusf(x)=3x3andf(9)=273=3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-184199Next Next post: x-sin-x-1-cos-2-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.