Menu Close

Given-f-x-0-x-dt-f-t-2-and-0-2-dt-f-t-2-6-1-3-Then-then-the-value-of-f-9-is-




Question Number 118663 by benjo_mathlover last updated on 19/Oct/20
 Given f(x) = ∫  _0 ^x  (dt/([f(t)]^2 ))  and ∫  _0 ^2  (dt/([ f(t)]^2 )) = (6)^(1/(3 ))    Then then the value of f(9) is __
$$\:{Given}\:{f}\left({x}\right)\:=\:\int\:\underset{\mathrm{0}} {\overset{{x}} {\:}}\:\frac{{dt}}{\left[{f}\left({t}\right)\right]^{\mathrm{2}} }\:\:{and}\:\int\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\:}}\:\frac{{dt}}{\left[\:{f}\left({t}\right)\right]^{\mathrm{2}} }\:=\:\sqrt[{\mathrm{3}\:}]{\mathrm{6}}\: \\ $$$${Then}\:{then}\:{the}\:{value}\:{of}\:{f}\left(\mathrm{9}\right)\:{is}\:\_\_ \\ $$
Commented by mr W last updated on 19/Oct/20
f ′(x)=(1/((f(x))^2 ))  y^2 dy=dx  (y^3 /3)=x+(C/3)  y^3 =3x+C  ((6)^(1/3) )^3 =3×2+C  ⇒C=0  ⇒y^3 =3x  ⇒y=f(x)=((3x))^(1/3)   f(9)=((3×9))^(1/3) =3
$${f}\:'\left({x}\right)=\frac{\mathrm{1}}{\left({f}\left({x}\right)\right)^{\mathrm{2}} } \\ $$$${y}^{\mathrm{2}} {dy}={dx} \\ $$$$\frac{{y}^{\mathrm{3}} }{\mathrm{3}}={x}+\frac{{C}}{\mathrm{3}} \\ $$$${y}^{\mathrm{3}} =\mathrm{3}{x}+{C} \\ $$$$\left(\sqrt[{\mathrm{3}}]{\mathrm{6}}\right)^{\mathrm{3}} =\mathrm{3}×\mathrm{2}+{C} \\ $$$$\Rightarrow{C}=\mathrm{0} \\ $$$$\Rightarrow{y}^{\mathrm{3}} =\mathrm{3}{x} \\ $$$$\Rightarrow{y}={f}\left({x}\right)=\sqrt[{\mathrm{3}}]{\mathrm{3}{x}} \\ $$$${f}\left(\mathrm{9}\right)=\sqrt[{\mathrm{3}}]{\mathrm{3}×\mathrm{9}}=\mathrm{3} \\ $$
Commented by 1549442205PVT last updated on 19/Oct/20
Great!Sir.
$$\mathrm{Great}!\mathrm{Sir}. \\ $$
Answered by benjo_mathlover last updated on 19/Oct/20
by Theorem Fundamental Calculus−1  f ′(x) = ∫_0 ^x  f(t) dt . Given equation   f(x) = ∫_0 ^x  (dt/([ f(t) ]^2 )) ⇒ f ′(x) = (1/([ f(x) ]^2 ))  ⇒ [ f(x)]^2  d(f(x)) = dx , integrating  both sides ∫ [ f(x)]^2  dx = ∫ dx   (1/3) [f(x)]^3  = x + C  ⇒ so f(x) = ((3x+λ ))^(1/(3 ))  , λ=3C  thus ∫_0 ^( 2)  (dt/([ f(t) ]^2 )) = f (2)= (6)^(1/(3 ))   we get f (2)=((6+λ))^(1/(3 ))  =(6)^(1/(3 ))  , give λ=0  Thus f(x) = ((3x))^(1/(3 ))  and f(9) = ((27))^(1/(3 ))  = 3
$${by}\:{Theorem}\:{Fundamental}\:{Calculus}−\mathrm{1} \\ $$$${f}\:'\left({x}\right)\:=\:\underset{\mathrm{0}} {\overset{{x}} {\int}}\:{f}\left({t}\right)\:{dt}\:.\:{Given}\:{equation} \\ $$$$\:{f}\left({x}\right)\:=\:\underset{\mathrm{0}} {\overset{{x}} {\int}}\:\frac{{dt}}{\left[\:{f}\left({t}\right)\:\right]^{\mathrm{2}} }\:\Rightarrow\:{f}\:'\left({x}\right)\:=\:\frac{\mathrm{1}}{\left[\:{f}\left({x}\right)\:\right]^{\mathrm{2}} } \\ $$$$\Rightarrow\:\left[\:{f}\left({x}\right)\right]^{\mathrm{2}} \:{d}\left({f}\left({x}\right)\right)\:=\:{dx}\:,\:{integrating} \\ $$$${both}\:{sides}\:\int\:\left[\:{f}\left({x}\right)\right]^{\mathrm{2}} \:{dx}\:=\:\int\:{dx} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{3}}\:\left[{f}\left({x}\right)\right]^{\mathrm{3}} \:=\:{x}\:+\:{C} \\ $$$$\Rightarrow\:{so}\:{f}\left({x}\right)\:=\:\sqrt[{\mathrm{3}\:}]{\mathrm{3}{x}+\lambda\:}\:,\:\lambda=\mathrm{3}{C} \\ $$$${thus}\:\int_{\mathrm{0}} ^{\:\mathrm{2}} \:\frac{{dt}}{\left[\:{f}\left({t}\right)\:\right]^{\mathrm{2}} }\:=\:{f}\:\left(\mathrm{2}\right)=\:\sqrt[{\mathrm{3}\:}]{\mathrm{6}} \\ $$$${we}\:{get}\:{f}\:\left(\mathrm{2}\right)=\sqrt[{\mathrm{3}\:}]{\mathrm{6}+\lambda}\:=\sqrt[{\mathrm{3}\:}]{\mathrm{6}}\:,\:{give}\:\lambda=\mathrm{0} \\ $$$${Thus}\:{f}\left({x}\right)\:=\:\sqrt[{\mathrm{3}\:}]{\mathrm{3}{x}}\:{and}\:{f}\left(\mathrm{9}\right)\:=\:\sqrt[{\mathrm{3}\:}]{\mathrm{27}}\:=\:\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *