Menu Close

Given-f-x-1-1-f-x-1-f-x-f-2-2-and-2-2018-x-f-2018-dx-2-a-3-b-5-c-7-d-11-e-101-f-then-a-b-c-d-e-f-




Question Number 129009 by bramlexs22 last updated on 12/Jan/21
 Given f(x+1)=((1+f(x))/(1−f(x))) ; f(2)=2  and ∫_2 ^( 2018) x.f(2018)dx=2^a .3^b .5^c .7^d .11^e .101^f   then a+b+c+d+e +f=__
Givenf(x+1)=1+f(x)1f(x);f(2)=2and22018x.f(2018)dx=2a.3b.5c.7d.11e.101fthena+b+c+d+e+f=__
Answered by liberty last updated on 12/Jan/21
→ { ((x=1→f(2)=((1+f(1))/(1−f(1)))=2; f(1)=(1/3))),((x=2⇒f(3)=((1+f(2))/(1−f(2)))=(3/(−1))=−3)),((x=3⇒f(4)=((1+f(3))/(1−f(3)))=((−2)/4)=−(1/2))),((x=4⇒f(5)=((1+f(4))/(1−f(4)))=(1/3))),((x=5⇒f(6)=((1+f(5))/(1−f(5)))=((4/3)/(2/3))=2)) :}  ⇒ (1/3); 2; −3; −(1/2); (1/3); 2; ...  then f(2018) = f(4×504+2)=f(2)=2  ∫_2 ^( 2018) xf(2018) dx = ∫_2 ^( 2018) 2x dx = 2018^2 −2^2    = 2020×2016 = 4×505×4×504   = 2^4 ×5×101×3×168   = 2^4 ×5×101×7×2^3 ×3^2    = 2^7 ×3^2 ×5×7×101
{x=1f(2)=1+f(1)1f(1)=2;f(1)=13x=2f(3)=1+f(2)1f(2)=31=3x=3f(4)=1+f(3)1f(3)=24=12x=4f(5)=1+f(4)1f(4)=13x=5f(6)=1+f(5)1f(5)=4/32/3=213;2;3;12;13;2;thenf(2018)=f(4×504+2)=f(2)=222018xf(2018)dx=220182xdx=2018222=2020×2016=4×505×4×504=24×5×101×3×168=24×5×101×7×23×32=27×32×5×7×101

Leave a Reply

Your email address will not be published. Required fields are marked *