Menu Close

Given-f-x-1-2x-x-2-1-4x-2-3x-3-2x-find-f-2-




Question Number 105822 by bemath last updated on 01/Aug/20
Given f(x+(1/(2x))) = x^2 +(1/(4x^2 ))+3x+(3/(2x))  find f(2)
Givenf(x+12x)=x2+14x2+3x+32xfindf(2)
Answered by bobhans last updated on 01/Aug/20
⇒x^2 +(1/(4x^2 )) = (x+(1/(2x)))^2 −1  ⇔ f(x+(1/(2x))) = (x+(1/(2x)))^2 +3(x+(1/(2x)))−1  ⇔ f(X) = X^2 +3X−1   f(2) = 4+6−1 = 9 ▲
x2+14x2=(x+12x)21f(x+12x)=(x+12x)2+3(x+12x)1f(X)=X2+3X1f(2)=4+61=9
Answered by mathmax by abdo last updated on 01/Aug/20
let x+(1/(2x))=t ⇒2x^2  +1 =2tx ⇒2x^2 −2tx +1 =0 ⇒  Δ^′  =t^2 −2 ⇒x_1 =((t+(√(t^2 −2)))/2)  and x_2 =((t−(√(t^2 −2)))/2)  x=x_1  ⇒f(t) =(((t+(√(t^2 −2)))/2))^2  +(1/(4(((t+(√(t^2 −2)))/2))^2 )) +3×((t+(√(t^2 −2)))/2)  +(3/(2(((t+(√(t^2 −2)))/2)))) ⇒  f(2) =(((2+(√2))/2))^2  +(1/((2+(√2))^2 )) +3.((2+(√2))/2) +(3/(2+(√2)))  x=x_2  ⇒f(t) =(((t−(√(t^2 −2)))/2))^2  +(1/(4(((t−(√(t^2 −2)))/2))^2 )) +3×((t−(√(t^2 −2)))/2)  +(3/(2(((t−(√(t^2 −2)))/2)))) ⇒  f(2) =(((2−(√2))/2))^2  +(1/(4(((2−(√2))/2))^2 )) +(3/2)(2−(√2))+(3/(2−(√2)))
letx+12x=t2x2+1=2tx2x22tx+1=0Δ=t22x1=t+t222andx2=tt222x=x1f(t)=(t+t222)2+14(t+t222)2+3×t+t222+32(t+t222)f(2)=(2+22)2+1(2+2)2+3.2+22+32+2x=x2f(t)=(tt222)2+14(tt222)2+3×tt222+32(tt222)f(2)=(222)2+14(222)2+32(22)+322

Leave a Reply

Your email address will not be published. Required fields are marked *