Question Number 183158 by cortano1 last updated on 21/Dec/22
$$\:{Given}\:{f}\left({x}\right)=\:\frac{\left[\frac{\mathrm{1}}{\mathrm{3}}{x}\right]\mid\mathrm{2}{x}\mid+{Ax}}{\mid\mathrm{4}−{x}^{\mathrm{2}} \mid} \\ $$$$\:{if}\:{f}\:'\left(−\mathrm{1}\right)=\:\mathrm{5}\:{then}\:{A}=? \\ $$$$\left[\:\:\:\:\right]\:=\:{floor}\:{function}\: \\ $$
Answered by TheSupreme last updated on 21/Dec/22
$${f}\left({x}\right)=\frac{{g}\left({x}\right){h}\left({x}\right)}{{u}\left({x}\right)}+\frac{{Ax}}{\mathrm{4}−{x}^{\mathrm{2}} } \\ $$$${f}'\left(−\mathrm{1}\right)=\frac{\left({g}'\left({x}\right){h}\left({x}\right)+{g}\left({x}\right){h}'\left({x}\right)\right){u}\left({x}\right)−{g}\left({x}\right){h}\left({x}\right){u}'\left({x}\right)}{{u}^{\mathrm{2}} \left({x}\right)}+{A}\:\frac{\mathrm{4}−{x}^{\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}} }{\left(\mathrm{4}−{x}^{\mathrm{2}} \right)^{\mathrm{2}} }= \\ $$$${g}'\left(−\mathrm{1}\right)=\mathrm{0} \\ $$$${g}\left(−\mathrm{1}\right)=−\mathrm{1} \\ $$$${h}'\left(−\mathrm{1}\right)=\mathrm{2} \\ $$$${h}\left(−\mathrm{1}\right)=\mathrm{2} \\ $$$${u}'\left(−\mathrm{1}\right)=\mathrm{6} \\ $$$${u}\left(−\mathrm{1}\right)=\mathrm{3} \\ $$$${f}'\left({x}\right)=\frac{\left(−\mathrm{2}+\mathrm{2}\right)\mathrm{3}+\mathrm{2}\ast\mathrm{6}}{\mathrm{3}^{\mathrm{2}} }+{A}\:\frac{\mathrm{1}}{\mathrm{9}}=\mathrm{5} \\ $$$$\mathrm{12}+{A}=\mathrm{45}\:\rightarrow\:{A}=\mathrm{32} \\ $$
Commented by greougoury555 last updated on 22/Dec/22
$${what}\:{the}\:{formula}\:\frac{{d}\left[\frac{\mathrm{1}}{\mathrm{3}}{x}\right]}{{dx}}\:=? \\ $$