Question Number 161229 by cortano last updated on 14/Dec/21
$$\:{Given}\:{f}\left({x}\right)=\:\begin{cases}{\mathrm{1}−\mid{x}\mid\:;\:{x}\leqslant\mathrm{1}}\\{\mid{x}\mid−\mathrm{1}\:;\:{x}>\mathrm{1}}\end{cases} \\ $$$$\:{find}\:\int_{−\mathrm{3}} ^{\:\mathrm{8}} \left[{f}\left({x}−\mathrm{1}\right)+{f}\left({x}+\mathrm{1}\right)\right]\:{dx}.\: \\ $$
Answered by mr W last updated on 14/Dec/21
Commented by mr W last updated on 14/Dec/21
$${red}:\:{f}\left({x}\right) \\ $$$${blue}:\:{f}\left({x}−\mathrm{1}\right) \\ $$$${green}:\:{f}\left({x}+\mathrm{1}\right) \\ $$$$\int_{−\mathrm{3}} ^{\mathrm{8}} {f}\left({x}−\mathrm{1}\right){dx}=−\frac{\mathrm{3}×\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{2}×\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{6}×\mathrm{6}}{\mathrm{2}}=\frac{\mathrm{29}}{\mathrm{2}} \\ $$$$\int_{−\mathrm{3}} ^{\mathrm{8}} {f}\left({x}+\mathrm{1}\right){dx}=−\frac{\mathrm{1}×\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{2}×\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{8}×\mathrm{8}}{\mathrm{2}}=\frac{\mathrm{65}}{\mathrm{2}} \\ $$$$\int_{−\mathrm{3}} ^{\mathrm{8}} \left[{f}\left({x}−\mathrm{1}\right)+{f}\left({x}+\mathrm{1}\right)\right]{dx}=\frac{\mathrm{29}+\mathrm{65}}{\mathrm{2}}=\mathrm{47} \\ $$