Menu Close

Given-f-x-10-2-sin-2x-Find-maximum-value-f-x-




Question Number 107018 by bemath last updated on 08/Aug/20
Given f(x)=((10)/(2−sin 2x)). Find maximum value   f(x).
Givenf(x)=102sin2x.Findmaximumvaluef(x).
Commented by PRITHWISH SEN 2 last updated on 08/Aug/20
for f(x) to be max. 2−sin 2x must be min.   i.e sin 2x must be max.i.e 1  ∴ max. f(x)=((10)/(2−1)) = 10  and for min. sin 2x must be min. i.e −1  ∴ min.f(x)=((10)/(2−(−1)))= 3.33..
forf(x)tobemax.2sin2xmustbemin.i.esin2xmustbemax.i.e1max.f(x)=1021=10andformin.sin2xmustbemin.i.e1min.f(x)=102(1)=3.33..
Commented by kaivan.ahmadi last updated on 08/Aug/20
f is maximum if 2−sin2x is minimum.so  since −1≤sin2x≤1⇒−1≤−sin2x≤1  ⇒1≤2−sin2x≤3⇒ min(2−sin2x)=1⇒  max(f)=((10)/1)=10
fismaximumif2sin2xisminimum.sosince1sin2x11sin2x112sin2x3min(2sin2x)=1max(f)=101=10
Answered by bemath last updated on 08/Aug/20
 we claim −1≤−sin 2x≤1  −1+2≤2−sin 2x≤2+1  1 ≤2−sin 2x≤3 ⇒(1/3)≤(1/(2−sin 2x))≤1  ((10)/3)≤((10)/(2−sin 2x))≤10 ⇒((10)/3)≤f(x)≤10  → { ((max=10)),((min=((10)/3))) :}
weclaim1sin2x11+22sin2x2+112sin2x31312sin2x1103102sin2x10103f(x)10{max=10min=103

Leave a Reply

Your email address will not be published. Required fields are marked *