Question Number 107018 by bemath last updated on 08/Aug/20
$$\mathcal{G}{iven}\:{f}\left({x}\right)=\frac{\mathrm{10}}{\mathrm{2}−\mathrm{sin}\:\mathrm{2}{x}}.\:{Find}\:{maximum}\:{value}\: \\ $$$${f}\left({x}\right). \\ $$
Commented by PRITHWISH SEN 2 last updated on 08/Aug/20
$$\mathrm{for}\:\mathrm{f}\left(\mathrm{x}\right)\:\mathrm{to}\:\mathrm{be}\:\mathrm{max}.\:\mathrm{2}−\mathrm{sin}\:\mathrm{2x}\:\mathrm{must}\:\mathrm{be}\:\mathrm{min}.\: \\ $$$$\mathrm{i}.\mathrm{e}\:\mathrm{sin}\:\mathrm{2x}\:\mathrm{must}\:\mathrm{be}\:\mathrm{max}.\mathrm{i}.\mathrm{e}\:\mathrm{1} \\ $$$$\therefore\:\mathrm{max}.\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{10}}{\mathrm{2}−\mathrm{1}}\:=\:\mathrm{10} \\ $$$$\mathrm{and}\:\mathrm{for}\:\mathrm{min}.\:\mathrm{sin}\:\mathrm{2x}\:\mathrm{must}\:\mathrm{be}\:\mathrm{min}.\:\mathrm{i}.\mathrm{e}\:−\mathrm{1} \\ $$$$\therefore\:\mathrm{min}.\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{10}}{\mathrm{2}−\left(−\mathrm{1}\right)}=\:\mathrm{3}.\mathrm{33}.. \\ $$
Commented by kaivan.ahmadi last updated on 08/Aug/20
$${f}\:{is}\:{maximum}\:{if}\:\mathrm{2}−{sin}\mathrm{2}{x}\:{is}\:{minimum}.{so} \\ $$$${since}\:−\mathrm{1}\leqslant{sin}\mathrm{2}{x}\leqslant\mathrm{1}\Rightarrow−\mathrm{1}\leqslant−{sin}\mathrm{2}{x}\leqslant\mathrm{1} \\ $$$$\Rightarrow\mathrm{1}\leqslant\mathrm{2}−{sin}\mathrm{2}{x}\leqslant\mathrm{3}\Rightarrow\:{min}\left(\mathrm{2}−{sin}\mathrm{2}{x}\right)=\mathrm{1}\Rightarrow \\ $$$${max}\left({f}\right)=\frac{\mathrm{10}}{\mathrm{1}}=\mathrm{10} \\ $$
Answered by bemath last updated on 08/Aug/20
$$\:{we}\:{claim}\:−\mathrm{1}\leqslant−\mathrm{sin}\:\mathrm{2}{x}\leqslant\mathrm{1} \\ $$$$−\mathrm{1}+\mathrm{2}\leqslant\mathrm{2}−\mathrm{sin}\:\mathrm{2}{x}\leqslant\mathrm{2}+\mathrm{1} \\ $$$$\mathrm{1}\:\leqslant\mathrm{2}−\mathrm{sin}\:\mathrm{2}{x}\leqslant\mathrm{3}\:\Rightarrow\frac{\mathrm{1}}{\mathrm{3}}\leqslant\frac{\mathrm{1}}{\mathrm{2}−\mathrm{sin}\:\mathrm{2}{x}}\leqslant\mathrm{1} \\ $$$$\frac{\mathrm{10}}{\mathrm{3}}\leqslant\frac{\mathrm{10}}{\mathrm{2}−\mathrm{sin}\:\mathrm{2}{x}}\leqslant\mathrm{10}\:\Rightarrow\frac{\mathrm{10}}{\mathrm{3}}\leqslant{f}\left({x}\right)\leqslant\mathrm{10} \\ $$$$\rightarrow\begin{cases}{{max}=\mathrm{10}}\\{{min}=\frac{\mathrm{10}}{\mathrm{3}}}\end{cases} \\ $$