Question Number 85130 by john santu last updated on 19/Mar/20
![given f(x)= ((√2)+1)sin x +((√2)−1)cos x find masimum value of function [f(x)]^2](https://www.tinkutara.com/question/Q85130.png)
Answered by Rio Michael last updated on 19/Mar/20
![f(x) = asin x + bcos x can be expressed in the form Rsin(x + α) where R>0 and 0^° <α<90° if R is the maximum value of f(x) then R^2 will be the maximum value of [f(x)]^2 ⇒ ((√2) +1)sin x + ((√2) − 1)cos x = Rsin x cosα + Rcos x sinα ⇒ R cosα = ((√2) + 1).......(i) Rsinα = ((√2) −1)..........(ii) R^2 = ((√2) + 1)^2 + ((√2) −1)^2 R^2 = 2 + 2(√2) + 1 + 2 −2(√(2 )) + 1 = 4 + 2 = 6 ⇒ maximum value of [f(x)]^2 = 6](https://www.tinkutara.com/question/Q85134.png)
Commented by john santu last updated on 19/Mar/20

Commented by Rio Michael last updated on 19/Mar/20

Answered by jagoll last updated on 19/Mar/20
![if my method f(x) = k cos (x−θ) with k = (√(((√2)−1)^2 +((√2)+1)^2 )) so max value of [f(x)]^2 equal to k = 3−2(√2) + 3+2(√2) = 6](https://www.tinkutara.com/question/Q85139.png)
Commented by john santu last updated on 19/Mar/20
