Menu Close

Given-f-x-2x-1-2x-1-and-f-1-x-2-1-f-1-x-2-1-1-x-2-then-x-




Question Number 129213 by bramlexs22 last updated on 13/Jan/21
 Given f(x)=((2x−1)/(2x+1)) and ((f((1/x^2 ))−1)/(f((1/x^2 ))+1)) = (1/x^2 )  then x =?
Givenf(x)=2x12x+1andf(1x2)1f(1x2)+1=1x2thenx=?
Answered by liberty last updated on 13/Jan/21
 f((1/x^2 ))−1=(((2/x^2 )−1)/((2/x^2 )+1))−1=((2−x^2 )/(2+x^2 ))−1=((−2x^2 )/(2+x^2 ))   f((1/x^2 ))+1=(((2/x^2 )−1)/((2/x^2 )+1))+1=((2−x^2 )/(2+x^2 ))+1=(4/(2+x^2 ))  (∵)(∴)⇒ ((f((1/x^2 ))−1)/(f((1/x^2 ))+1)) = −(1/2)x^2 =(1/x^2 )    x^4 +2=0 ⇒(x^2 −i(√2))(x^2 +i(√2))=0   x=±(√(i(√2))) ; x=±(√(−i(√2)))
f(1x2)1=2x212x2+11=2x22+x21=2x22+x2f(1x2)+1=2x212x2+1+1=2x22+x2+1=42+x2()()f(1x2)1f(1x2)+1=12x2=1x2x4+2=0(x2i2)(x2+i2)=0x=±i2;x=±i2
Answered by mr W last updated on 14/Jan/21
f(x)=1−(2/(2x+1))  let t=(1/x^2 )  ((f(t)−1)/(f(t)+1))=((1−(2/(2t+1))−1)/(1−(2/(2t+1))+1))=((−1)/(2t))=t  ⇒t^2 =−(1/2)  ⇒(1/x^4 )=−(1/2)  ⇒x^4 =−2=2e^(πi)   ⇒x=(2)^(1/4) e^((((kπ)/2)+(π/4))i)     (k=0,1,2,3)          =(1/( (2)^(1/4) ))(1+i), (1/( (2)^(1/4) ))(−1+i), (1/( (2)^(1/4) ))(−1−i), (1/( (2)^(1/4) ))(1−i)
f(x)=122x+1lett=1x2f(t)1f(t)+1=122t+11122t+1+1=12t=tt2=121x4=12x4=2=2eπix=24e(kπ2+π4)i(k=0,1,2,3)=124(1+i),124(1+i),124(1i),124(1i)

Leave a Reply

Your email address will not be published. Required fields are marked *