Menu Close

Given-f-x-3-3-sinx-1-cosx-show-that-f-x-cosx-tan-3-x-3-3-sin-2-x-




Question Number 106847 by mathocean1 last updated on 07/Aug/20
Given f(x)=((3(√3))/(sinx))+(1/(cosx))  show that f ′(x)=cosx(((tan^3 x−3(√3)))/(sin^2 x))
Givenf(x)=33sinx+1cosxshowthatf(x)=cosx(tan3x33)sin2x
Answered by bemath last updated on 07/Aug/20
    ^(@bemath@)   f(x)=3(√3) csc x + sec x   f ′(x)=−3(√3) cot x csc x+sec x tan x  f ′(x) = ((sin x)/(cos^2 x))−((3(√3) cos x)/(sin^2 x))  = ((sin^3 x−3(√3) cos^3 x)/(cos^2 x sin^2 x))  =((tan^3 x−3(√3) )/(sin^2 x((1/(cos x))))) = ((cos x(tan^3 x−3(√3)))/(sin^2 x))
@bemath@f(x)=33cscx+secxf(x)=33cotxcscx+secxtanxf(x)=sinxcos2x33cosxsin2x=sin3x33cos3xcos2xsin2x=tan3x33sin2x(1cosx)=cosx(tan3x33)sin2x
Commented by mathocean1 last updated on 07/Aug/20
Please sir can you detail the last  line? I′m not understanding how  tan^(3 )  appeared...
Pleasesircanyoudetailthelastline?Imnotunderstandinghowtan3appeared
Commented by bemath last updated on 07/Aug/20
from ((sin^3 x−3(√3) cos^3 x)/(cos^2 x sin^2 x)) :((cos^3 x)/(cos^3 x))
fromsin3x33cos3xcos2xsin2x:cos3xcos3x
Answered by Dwaipayan Shikari last updated on 07/Aug/20
f(x)=((3(√3))/(sinx))+(1/(cosx))  f′(x)=((−3(√3)cosx)/(sin^2 x))+secxtanx=((−3(√(3 ))cosx)/(sin^2 x))+((sinx)/(cos^2 x))  =((−3(√3)cos^3 x+sin^3 x)/(sin^2 xcos^2 x))=((−3(√3)+((sin^3 x)/(cos^3 x)))/(sin^2 x((cos^2 x)/(cos^3 x))))=cosx(((tan^3 x−3(√3))/(sin^2 x)))
f(x)=33sinx+1cosxf(x)=33cosxsin2x+secxtanx=33cosxsin2x+sinxcos2x=33cos3x+sin3xsin2xcos2x=33+sin3xcos3xsin2xcos2xcos3x=cosx(tan3x33sin2x)
Commented by bemath last updated on 07/Aug/20
typo sir. it tan^3 x
typosir.ittan3x
Answered by 1549442205PVT last updated on 07/Aug/20
f(x)=((3(√3))/(sinx))+(1/(cosx))  ⇒f ′(x)=−((3(√3))/(sin^2 x))×cosx+((−1)/(cos^2 x))×(−sinx)  (since ((1/u))′=((−1)/u^2 )×u′)  =((−3(√3)cosx)/(sin^2 x))+((sinx)/(cos^2 x))=((−3(√3)cosx)/(sin^2 x))+((sin^3 x)/(sin^2 xcos^2 x))  =((−3(√3)cosx)/(sin^2 x))+(((((sin^3 x)/(cos^3 x)))cosx)/(sin^2 x))  =((−3(√3)cosx)/(sin^2 x))+((tan^3 x.cosx)/(sin^2 x))  =cosx(((tan^3 x−3(√3))/(sin^2 x)))(q.e.d)
f(x)=33sinx+1cosxf(x)=33sin2x×cosx+1cos2x×(sinx)(since(1u)=1u2×u)=33cosxsin2x+sinxcos2x=33cosxsin2x+sin3xsin2xcos2x=33cosxsin2x+(sin3xcos3x)cosxsin2x=33cosxsin2x+tan3x.cosxsin2x=cosx(tan3x33sin2x)(q.e.d)
Commented by mathocean1 last updated on 08/Aug/20
Thank you sirs...
Thankyousirs

Leave a Reply

Your email address will not be published. Required fields are marked *