Menu Close

Given-f-x-5-x-find-f-x-by-using-limit-first-principal-derivative-




Question Number 116930 by bobhans last updated on 08/Oct/20
Given f(x)=5^(√x)  find f ′(x) by using limit  (first principal derivative)
Givenf(x)=5xfindf(x)byusinglimit(firstprincipalderivative)
Commented by bobhans last updated on 08/Oct/20
Answered by 1549442205PVT last updated on 09/Oct/20
First,we prove that lim _(x→0) ((a^x −1)/x)=lna.  by using the definition of limit  We can assume x>0(if x<0 put x=−t)  Suppose ε>0 be an arbitrarily small number  so that ∣((a^x −1)/x)−lna∣<ε.Then choosing    δ=((ln[(−εx+xlna+1)^(−1) ])/(lna))>0 we have  ∣x∣<δ⇔−((ln[(−εx+xlna+1)^(−1) ])/(lna))<x<((ln[(−εx+xlna+1)^(−1) ])/(lna))  ⇒−ln[(−εx+xlna+1)^(−1) ]<xlna<ln[(−εx+xlna+1)^(−1) ]  ⇒ln(−εx+xlna+1)<lna^x <ln[(−εx+xlna+1)^(−1) ]  ⇒−εx+xlna+1<a^x <(−εx+xlna+1)^(−1)   ⇒−εx<a^x −1−xlna<εx  (Since (−εx+xlna+1)^(−1) =(1/(−εx+xlna+1))  <−εx+xlna+1<εx+xlna+1)  ⇒−ε<((a^x −1−xlna)/x)<ε⇒∣((a^x −1)/x)−lna∣<ε  By the definition of the limit  of a  function we have:  lim_(x→0) ((a^x −1)/x)=lna (Q.E.D)(1)  Now by the definition of derivative of a  function we have  f ′(x)=lim{[f(x+Δx)−f(x)]/Δx}.Hence,  (5^(√x)   )′=lim_(Δu→0) ((5^(√(x+Δx))  −5^(√x)   )/( Δx))  =lim_(Δx→0) ((5^(√x) (5^((√(x+Δx))−(√x)) −1))/( ((√(x+Δx))−(√x)).((Δx)/( (√(x+Δx))−(√x)))))  =lim((5^(√x) (5^((√(x+Δx))−(√x)) −1))/( ((√(x+Δx))−(√x)).((Δx((√(x+Δx))+(√x)))/( (√(x+Δx))−(√x))((√(x+Δx))+(√x))))))  =lim((5^(√x) (5^((√(x+Δx))−(√x)) −1))/( ((√(x+Δx))−(√x)).((Δx((√(x+Δx))+(√x)))/( Δx))))  =lim_(Δx→0) (((5^(√x) (5^((√(x+Δx))−(√x)) −1))/( ((√(x+Δx))−(√x)).))).lim_(Δx→0) (1/( (√(x+Δx))+(√x)))  =5^(√x) ln5.(1/(2(√x)))   since lim_(Δx→0) (((5^((√(x+Δx))−(√x)) −1))/( ((√(x+Δx))−(√x)).))=ln5(by (1))  Thus,finally we obtained   (a^(√x) )′=((5^(√x) ln5)/(2(√x))) is proved by limit
First,weprovethatlimx0ax1x=lna.byusingthedefinitionoflimitWecanassumex>0(ifx<0putx=t)Supposeϵ>0beanarbitrarilysmallnumbersothatax1xlna∣<ϵ.Thenchoosingδ=ln[(ϵx+xlna+1)1]lna>0wehavex∣<δln[(ϵx+xlna+1)1]lna<x<ln[(ϵx+xlna+1)1]lnaln[(ϵx+xlna+1)1]<xlna<ln[(ϵx+xlna+1)1]ln(ϵx+xlna+1)<lnax<ln[(ϵx+xlna+1)1]ϵx+xlna+1<ax<(ϵx+xlna+1)1ϵx<ax1xlna<ϵx(Since(ϵx+xlna+1)1=1ϵx+xlna+1<ϵx+xlna+1<ϵx+xlna+1)ϵ<ax1xlnax<ϵ⇒∣ax1xlna∣<ϵBythedefinitionofthelimitofafunctionwehave:limx0ax1x=lna(Q.E.D)(1)Nowbythedefinitionofderivativeofafunctionwehavef(x)=lim{[f(x+Δx)f(x)]/Δx}.Hence,(5x)=limΔu05x+Δx5xΔx=limΔx05x(5x+Δxx1)(x+Δxx).Δxx+Δxx=lim5x(5x+Δxx1)(x+Δxx).Δx(x+Δx+x)x+Δxx)(x+Δx+x)=lim5x(5x+Δxx1)(x+Δxx).Δx(x+Δx+x)Δx=limΔx0(5x(5x+Δxx1)(x+Δxx).).limΔx01x+Δx+x=5xln5.12xsincelimΔx0(5x+Δxx1)(x+Δxx).=ln5(by(1))Thus,finallyweobtained(ax)=5xln52xisprovedbylimit
Commented by bemath last updated on 08/Oct/20
sir why not (5^(√x) /(2(√x))) .ln (5) ?
sirwhynot5x2x.ln(5)?
Commented by bemath last updated on 08/Oct/20
(5^(√(x+Δx))  −5^(√x)  )×(5^(√(x+Δx))  +5^(√x) )  ≠ 5^(x+Δx)  − 5^x  sir
(5x+Δx5x)×(5x+Δx+5x)5x+Δx5xsir
Commented by bobhans last updated on 08/Oct/20
sir pvt, your answer not correct sir
sirpvt,youranswernotcorrectsir
Commented by 1549442205PVT last updated on 08/Oct/20
I had a mistake and i am correcting it   and now it is corrected  completely  Please,check help me.Thank Sir
IhadamistakeandiamcorrectingitandnowitiscorrectedcompletelyPlease,checkhelpme.ThankSir
Commented by bemath last updated on 08/Oct/20
thank you
thankyou
Commented by bobhans last updated on 08/Oct/20
sir pvt, thank you
sirpvt,thankyou
Commented by 1549442205PVT last updated on 09/Oct/20
Thank Sir.You are welcome.
ThankSir.Youarewelcome.
Answered by TANMAY PANACEA last updated on 08/Oct/20
(dy/dx)=lim_(h→0)  ((5^((√(x+h)) ) −5^(√x) )/h)  =lim_(h→0)  5^((√x) ) ×(((5^((√(x+h)) −(√x) ) −1)/h))  =5^((√x) ) ×lim_(t→0) (((5^t −1)/t))×lim_(h→0) ((((√(x+h)) −(√x) )/h))[t=(√(x+h)) −(√x) ]  =5^((√x) ) ×lim_(t→0) (((e^(tln5) −1)/(tln5)))×ln5×lim_(h→0) ((h/h)×(1/( (√(x+h)) +(√x))))  =5^((√x) ) ×1×ln5×(1/(2(√x)))=5^((√x) ) ×ln5×(1/(2(√x)))
dydx=limh05x+h5xh=limh05x×(5x+hx1h)=5x×limt0(5t1t)×limh0(x+hxh)[t=x+hx]=5x×limt0(etln51tln5)×ln5×limh0(hh×1x+h+x)=5x×1×ln5×12x=5x×ln5×12x

Leave a Reply

Your email address will not be published. Required fields are marked *