Menu Close

Given-f-x-ax-b-g-x-px-q-and-f-x-lt-g-x-has-solution-1-lt-x-lt-5-Give-one-example-f-x-and-g-x-satisfy-the-condition-




Question Number 130670 by EDWIN88 last updated on 27/Jan/21
 Given f(x)=(√(ax+b)) ; g(x)=px+q  and f(x)<g(x) has solution  1<x<5. Give one example f(x)  and g(x) satisfy the condition
Givenf(x)=ax+b;g(x)=px+qandf(x)<g(x)hassolution1<x<5.Giveoneexamplef(x)andg(x)satisfythecondition
Commented by MJS_new last updated on 28/Jan/21
do you have an example? to me it seems  impossible with a, b, p, q, x ∈R
doyouhaveanexample?tomeitseemsimpossiblewitha,b,p,q,xR
Commented by EDWIN88 last updated on 28/Jan/21
yes sir. i think it′s possible  if f(x)>g(x)
yessir.ithinkitspossibleiff(x)>g(x)
Answered by MJS_new last updated on 28/Jan/21
with f(x)>g(x) we start at the borders  x=1 ⇒ (√(a+b))=p+q  x=5 ⇒ (√(5a+b))=5p+q  ⇒  p=(((√(5a+b))−(√(a+b)))/4)∧q=((5(√(a+b))−(√(5a+b)))/4)  ⇒  (√(ax+b))>(((√(5a+b))−(√(a+b)))/4)x+((5(√(a+b))−(√(5a+b)))/4); 1<x<5  test this for x=3  (√(3a+b))>(((√(5a+b))+(√(a+b)))/2)  2(√(3a+b))>(√(5a+b))+(√(a+b))  t^2 =3a+b∧t>0 ⇒ b=t^2 −3a  2t>(√(t^2 +2a))+(√(t^2 −2a))  4t^2 >2t^2 +2(√(t^2 +2a))(√(t^2 −2a))  t^2 >(√(t^2 +2a))(√(t^2 −2a))  t^4 >t^4 −4a^4   true for a≠0  ⇒  we can choose a, b with ax+b≥0∧1<x<5 ⇔  ⇔ b≥−ax∧1<x<5 ⇒  { ((b>−5a; a<0)),((b>−a; a>0)) :}  examples  (1) a=−3∧b=16 ⇒ p=((1−(√(13)))/4)∧q=((−1+5(√(13)))/4)  (√(−3x+16))>((1−(√(13)))/4)x−((1−5(√(13)))/4); 1<x<5  (2) a=5∧b=−1 ⇒ p=((−1+(√6))/2)∧q=((5−(√6))/2)  (√(5x−1))>−((1−(√6))/2)x+((5−(√6))/2); 1<x<5  plot them to see it′s true
withf(x)>g(x)westartatthebordersx=1a+b=p+qx=55a+b=5p+qp=5a+ba+b4q=5a+b5a+b4ax+b>5a+ba+b4x+5a+b5a+b4;1<x<5testthisforx=33a+b>5a+b+a+b223a+b>5a+b+a+bt2=3a+bt>0b=t23a2t>t2+2a+t22a4t2>2t2+2t2+2at22at2>t2+2at22at4>t44a4truefora0wecanchoosea,bwithax+b01<x<5bax1<x<5{b>5a;a<0b>a;a>0examples(1)a=3b=16p=1134q=1+51343x+16>1134x15134;1<x<5(2)a=5b=1p=1+62q=5625x1>162x+562;1<x<5plotthemtoseeitstrue
Commented by liberty last updated on 28/Jan/21
Commented by liberty last updated on 28/Jan/21
correct sir
correctsir
Commented by EDWIN88 last updated on 28/Jan/21
i got (√(−4x+20)) > −x+5 sir
igot4x+20>x+5sir
Commented by EDWIN88 last updated on 28/Jan/21

Leave a Reply

Your email address will not be published. Required fields are marked *