Menu Close

given-f-x-cos-2-x-for-x-pi-12-pi-12-f-x-1-2-1-show-that-x-y-pi-12-pi-12-cos-2-x-cos-2-y-1-2-x-y-




Question Number 122293 by mathocean1 last updated on 15/Nov/20
given f(x)=cos^2 x  for x ∈ [−(π/(12));(π/(12 ))] , ∣f′(x)∣≤(1/2).  1) show that ∀ x, y ∈ [−(π/(12));(π/(12))] ;  ∣cos^2 x−cos^2 y∣≤(1/2)∣x−y∣
givenf(x)=cos2xforx[π12;π12],f(x)∣⩽12.1)showthatx,y[π12;π12];cos2xcos2y∣⩽12xy
Commented by ZiYangLee last updated on 16/Nov/20
By MVT, we have                        ((f(x)−f(y))/(x−y))=f′(c)≤(1/2)  where c∈(x,y),  Hence,                      ∣f(x)−f(y)∣≤(1/2)∣x−y∣
ByMVT,wehavef(x)f(y)xy=f(c)12wherec(x,y),Hence,f(x)f(y)∣⩽12xy
Answered by mathmax by abdo last updated on 15/Nov/20
∀x ∈[−(π/(12)),(π/(12))]  ∣f^′ (x)∣≤(1/2) ⇒−(1/2)≤f^′ (x)≤(1/2) ⇒  −(1/2)∫_x ^y  dt ≤∫_x ^y  f^′ (t)dt ≤(1/2)∫_x ^y  dt ⇒  −(1/2)(y−x) ≤f(y)−f(x)≤(1/2)(y−x) ⇒∣f(x)−f(y)∣≤(1/2)∣x−y∣ ⇒  ∣cos^2 x−cos^2 y∣≤((∣x−y∣)/2)
x[π12,π12]f(x)∣⩽1212f(x)1212xydtxyf(t)dt12xydt12(yx)f(y)f(x)12(yx)⇒∣f(x)f(y)∣⩽12xycos2xcos2y∣⩽xy2

Leave a Reply

Your email address will not be published. Required fields are marked *