Menu Close

Given-f-x-f-x-2-x-R-if-0-2-f-x-dx-k-then-0-1010-f-x-2a-dx-for-a-Z-




Question Number 125841 by bramlexs22 last updated on 14/Dec/20
Given f(x)=f(x+2) ∀x∈R  if ∫_0 ^2 f(x)dx=k then ∫_0 ^(1010) f(x+2a)dx ?  for a∈Z
Givenf(x)=f(x+2)xRif20f(x)dx=kthen10100f(x+2a)dx?foraZ
Commented by mr W last updated on 14/Dec/20
505
505
Commented by bramlexs22 last updated on 14/Dec/20
step by step sir
stepbystepsir
Commented by bramlexs22 last updated on 14/Dec/20
i got 505k sir. not 505
igot505ksir.not505
Answered by liberty last updated on 14/Dec/20
f(x)=f(x+2) it follow that f(x) is   a periodic function with periode is 2  then ∫_0 ^(1010) f(x)dx = ∫_0 ^2 f(x)dx+∫_2 ^4 f(x)dx+  ... + ∫_(1008) ^(1010) f(x)dx  where ∫_0 ^2 f(x)dx=∫_2 ^4 f(x)dx=...=∫_(1008) ^(1010) f(x)dx  so we get ∫_0 ^(1010) f(x)dx=k+k+k+...+k , 505 times  ∫_0 ^(1010) f(x)dx = 505k.
f(x)=f(x+2)itfollowthatf(x)isaperiodicfunctionwithperiodeis2then10100f(x)dx=20f(x)dx+42f(x)dx++10101008f(x)dxwhere20f(x)dx=42f(x)dx==10101008f(x)dxsoweget10100f(x)dx=k+k+k++k,505times10100f(x)dx=505k.

Leave a Reply

Your email address will not be published. Required fields are marked *