Menu Close

given-f-x-f-x-4-x-R-and-5-7-f-x-dx-p-what-is-2-10-f-x-dx-




Question Number 78829 by jagoll last updated on 21/Jan/20
given f(x)=f(x+4) ∀x∈R  and ∫_5 ^7 f(x)dx=p . what is   ∫_2 ^(10) f(x)dx?
givenf(x)=f(x+4)xRand75f(x)dx=p.whatis102f(x)dx?
Commented by jagoll last updated on 21/Jan/20
i′m solve by mr W   ∫_5 ^7 f(x)dx= ∫_5 ^7 f(x−3)d(x−3) =  ∫_2 ^4 f(x)dx=p  now ∫_2 ^(10) f(x)dx=∫_2 ^4 f(x)dx+∫_4 ^6 f(x)dx+∫_6 ^8 f(x)dx  +∫_8 ^(10) f(x)dx= 4p
imsolvebymrW75f(x)dx=75f(x3)d(x3)=42f(x)dx=pnow102f(x)dx=42f(x)dx+64f(x)dx+86f(x)dx+108f(x)dx=4p
Commented by jagoll last updated on 21/Jan/20
mr W  my answer correct?
mrWmyanswercorrect?
Commented by mr W last updated on 21/Jan/20
the basic is:  for a periodic function f(x) with  period T, i.e. f(x)=f(x+T), the  integral over a length of T is always  the same, indepedently from the  start point of the integral.  see diagram.  e.g. if the period is 4, i.e. f(x)=f(x+4),  we have  ∫_1 ^5 f(x)dx=∫_3 ^7 f(x)dx=∫_a ^(a+4) f(x)=∫_0 ^4 f(x)dx  we have also  ∫_1 ^(13) f(x)dx=∫_3 ^(15) f(x)dx=∫_a ^(a+12) f(x)=3∫_0 ^4 f(x)dx  etc.  keep in mind: we should alway take  one or more “whole” periods!   e.g. ∫_1 ^4 f(x)dx≠∫_3 ^6 f(x)dx
thebasicis:foraperiodicfunctionf(x)withperiodT,i.e.f(x)=f(x+T),theintegraloveralengthofTisalwaysthesame,indepedentlyfromthestartpointoftheintegral.seediagram.e.g.iftheperiodis4,i.e.f(x)=f(x+4),wehave15f(x)dx=37f(x)dx=aa+4f(x)=04f(x)dxwehavealso113f(x)dx=315f(x)dx=aa+12f(x)=304f(x)dxetc.keepinmind:weshouldalwaytakeoneormorewholeperiods!e.g.14f(x)dx36f(x)dx
Commented by mr W last updated on 21/Jan/20
Commented by mr W last updated on 21/Jan/20
therefore your answer is not correct.  and for a function with period 4, if  only ∫_5 ^7 f(x)dx is given, it′s not possible  to find out ∫_2 ^(10) f(x)dx.
thereforeyouranswerisnotcorrect.andforafunctionwithperiod4,ifonly57f(x)dxisgiven,itsnotpossibletofindout210f(x)dx.
Commented by mr W last updated on 21/Jan/20
∫_5 ^7 f(x)dx= ∫_5 ^7 f(x−4)d(x−4)dx =∫_1 ^3 f(x)dx=p  ∫_5 ^7 f(x)dx≠ ∫_5 ^7 f(x−3)d(x−3)dx ≠∫_2 ^4 f(x)dx    ∫_2 ^(10) f(x)dx=2 ∫_1 ^5 f(x)dx=2(∫_1 ^3 f(x)dx+∫_3 ^5 f(x)dx)  =2(p+∫_3 ^5 f(x)dx)  =2(p+???)
75f(x)dx=75f(x4)d(x4)dx=31f(x)dx=p75f(x)dx75f(x3)d(x3)dx42f(x)dx102f(x)dx=251f(x)dx=2(13f(x)dx+35f(x)dx)=2(p+35f(x)dx)=2(p+???)
Commented by jagoll last updated on 21/Jan/20
oo i understand sir. because f(x) is periodic  function with periode 4 , so f(x±4) = f(x)  thanks you sir.
ooiunderstandsir.becausef(x)isperiodicfunctionwithperiode4,sof(x±4)=f(x)thanksyousir.
Commented by mr W last updated on 21/Jan/20
that′s right!
thatsright!

Leave a Reply

Your email address will not be published. Required fields are marked *