Menu Close

Given-f-x-ln-x-x-1-a-find-the-domain-of-f-b-find-the-limts-of-f-at-the-boundary-of-its-domain-hence-state-the-asymptote-of-y-f-x-




Question Number 95677 by Rio Michael last updated on 26/May/20
 Given f(x) = ((ln x)/(x−1))  (a) find the domain of f.  (b) find the limts of f at the boundary of its domain  hence state the asymptote of y = f(x).
Givenf(x)=lnxx1(a)findthedomainoff.(b)findthelimtsoffattheboundaryofitsdomainhencestatetheasymptoteofy=f(x).
Answered by mathmax by abdo last updated on 27/May/20
1)D_f =]0,1[∪]1,+∞[  2)lim_(x→o^+ )   f(x) =+∞   and lim_(x→1^+ ) f(x)=lim_(x→1) f(x) =1  lim_(x→+∞) f(x) =lim_(x→+∞)   ((lnx)/(x(1−x^(−1) ))) =lim_(x→+∞)   ((lnx)/x)=0 ⇒  y=0 is assymtote for C_f
1)Df=]0,1[]1,+[2)limxo+f(x)=+andlimx1+f(x)=limx1f(x)=1limx+f(x)=limx+lnxx(1x1)=limx+lnxx=0y=0isassymtoteforCf
Commented by Rio Michael last updated on 27/May/20
thank you so much sir.
thankyousomuchsir.

Leave a Reply

Your email address will not be published. Required fields are marked *