Menu Close

Given-f-x-nx-n-1-n-1-x-n-1-x-p-1-x-p-x-1-x-R-and-n-p-N-N-a-Calculate-lim-x-f-x-b-Show-that-lim-x-1-n-n-1-2p-




Question Number 99713 by Ar Brandon last updated on 22/Jun/20
Given f(x)=((nx^(n+1) −(n+1)x^n +1)/(x^(p+1) −x^p −x+1)) , x∈R  and  (n,p)∈N^∗ ×N^∗   a\Calculate lim_(x→+∞) f(x)  b\Show that lim_(x→1) =((n(n+1))/(2p))
Givenf(x)=nxn+1(n+1)xn+1xp+1xpx+1,xRand(n,p)N×NaCalculatelimfx+(x)bShowthatlimx1=n(n+1)2p
Answered by Ar Brandon last updated on 23/Jun/20
b\lim_(x→1) f(x)=((n−(n+1)+1)/(1−1−1+1))=(0/0)  {Passons par la loi de LH}  (((d/dx){nx^(n+1) −(n+1)x^n +1})/((d/dx){x^(p+1) −x^p −x+1}))=((n(n+1)x^n −n(n+1)x^(n−1) )/((p+1)x^p −px^(p−1) −1))⇒lim_(x→1) f(x)=(0/0)  (((d^2 /dx^2 ){nx^(n+1) −(n+1)x^n +1})/((d^2 /dx^2 ){x^(p+1) −x^p −x+1}))=((n^2 (n+1)x^(n−1) −n(n+1)(n−1)x^(n−2) )/(p(p+1)x^(p−1) −p(p−1)x^(p−2) ))  lim_(x→1) f(x)=((n^2 (n+1)−n(n^2 −1))/(p(p+1)−p(p−1)))=((n^3 +n^2 −n^3 +n)/(p^2 +p−p^2 +p))=((n(n+1))/(2p))
blimfx1(x)=n(n+1)+1111+1=00{PassonsparlaloideLH}ddx{nxn+1(n+1)xn+1}ddx{xp+1xpx+1}=n(n+1)xnn(n+1)xn1(p+1)xppxp11limfx1(x)=00d2dx2{nxn+1(n+1)xn+1}d2dx2{xp+1xpx+1}=n2(n+1)xn1n(n+1)(n1)xn2p(p+1)xp1p(p1)xp2limfx1(x)=n2(n+1)n(n21)p(p+1)p(p1)=n3+n2n3+np2+pp2+p=n(n+1)2p
Answered by Ar Brandon last updated on 23/Jun/20
a\lim_(x→∞) f(x)=lim_(x→∞) ((n−(n+1)x^(−1) +x^(−n−1) )/(x^(p−n) −x^(p−n−1) −x^(−n) +x^(−n−1) ))                        =lim_(x→∞) {(n/(x^(p−n) −x^(p−n−1) ))}= { ((n  si  p=n)),((+∞  si  p<n)),((0  si  p>n)) :}
alimfx(x)=limxn(n+1)x1+xn1xpnxpn1xn+xn1=limx{nxpnxpn1}={nsip=n+sip<n0sip>n

Leave a Reply

Your email address will not be published. Required fields are marked *