Menu Close

Given-f-x-px-q-x-2-q-0-f-1-q-1-then-f-1-2q-




Question Number 119909 by bramlexs22 last updated on 28/Oct/20
Given f(x)=((px+q)/(x+2)) , q≠ 0  f^(−1)  (q) = −1 then f^(−1) (2q)=?
Givenf(x)=px+qx+2,q0f1(q)=1thenf1(2q)=?
Answered by TITA last updated on 28/Oct/20
q=f(−1)     q=q−p  p=0  f(x)=(q/(x+2))  ⇒  let f(x)=y   y=(q/(x+2))     xy+2y=q     x=((q−2y)/y)  hence f^(−1) (x)=((q−2x)/x)  ,x≠0   ⇒ f^(−1) (2q)=((q−4q)/(2q))=((−3q)/(2q))  ⇒f^(−1) (2q)=((−3)/2)
q=f(1)q=qpp=0f(x)=qx+2letf(x)=yy=qx+2xy+2y=qx=q2yyhencef1(x)=q2xx,x0f1(2q)=q4q2q=3q2qf1(2q)=32
Answered by 1549442205PVT last updated on 28/Oct/20
f(x)=((px+q)/(x+2)) , q≠ 0  ⇒x(f(x)−p)=q−2f(x)⇒x=((q−2f(x))/(f(x)−p))  ⇒f^(−1) (x)=((q−2x)/(x−p)).From the hypothesis  f^(−1) (q)=−1we get ((q−2q)/(q−p))=−1  ⇒q−2q=p−q⇒p=0⇒f^(−1) (x)=((q−2x)/x)  ⇒f^(−1) (2q)=((q−2.2q)/(2q))=((−3q)/(2q))=−3/2
f(x)=px+qx+2,q0x(f(x)p)=q2f(x)x=q2f(x)f(x)pf1(x)=q2xxp.Fromthehypothesisf1(q)=1wegetq2qqp=1q2q=pqp=0f1(x)=q2xxf1(2q)=q2.2q2q=3q2q=3/2

Leave a Reply

Your email address will not be published. Required fields are marked *