Menu Close

Given-f-x-sin-2-x-find-the-expansion-of-f-x-up-to-the-n-th-term-




Question Number 98953 by Ar Brandon last updated on 17/Jun/20
Given f(x)=sin^2 x find the expansion of f(x)  up to the n^(th)  term.
Givenf(x)=sin2xfindtheexpansionoff(x)uptothenthterm.
Answered by mr W last updated on 17/Jun/20
f(x)=sin^2  x=(1/2)(1−cos 2x)  =(1/2)−(1/2)(1−(((2x)^2 )/(2!))+(((2x)^4 )/(4!))−...)  =(1/2)−Σ_(n=0) ^∞ (((−1)^n 2^(2n−1) x^(2n) )/((2n)!))
f(x)=sin2x=12(1cos2x)=1212(1(2x)22!+(2x)44!)=12n=0(1)n22n1x2n(2n)!
Answered by mathmax by abdo last updated on 17/Jun/20
f(x) =Σ_(k=0) ^n  ((f^((k)) (0))/(k!)) x^k  +....we have f(x)=sin^2 x ⇒f^′ (x) =2sinx cosx ⇒  f^((k)) (x) =2(sinxcosx)^((k−1))  =2 Σ_(p=0) ^(k−1)  C_(k−1) ^p  sin^((p)) (x)cos^((k−p)) (x)  f^((k)) (x) =2 Σ_(p=0) ^(k−1)  sin(x+((pπ)/2))cos(x+(((k−p)π)/2)) ⇒  f^((k)) (0) =2 Σ_(p=0) ^(k−1)  sin(((pπ)/2))cos((((k−p)π)/2)) ⇒  sin^2 x =2Σ_(k=1) ^n  (1/(k!)) (Σ_(p=0) ^(k−1)  sin(((pπ)/2))cos((((k−p)π)/2))) x^k  +....
f(x)=k=0nf(k)(0)k!xk+.wehavef(x)=sin2xf(x)=2sinxcosxf(k)(x)=2(sinxcosx)(k1)=2p=0k1Ck1psin(p)(x)cos(kp)(x)f(k)(x)=2p=0k1sin(x+pπ2)cos(x+(kp)π2)f(k)(0)=2p=0k1sin(pπ2)cos((kp)π2)sin2x=2k=1n1k!(p=0k1sin(pπ2)cos((kp)π2))xk+.

Leave a Reply

Your email address will not be published. Required fields are marked *