Menu Close

Given-f-x-x-1-x-1-If-f-2-x-f-f-x-f-3-x-f-f-f-x-f-1998-x-g-x-then-1-e-1-g-x-dx-




Question Number 117066 by bemath last updated on 09/Oct/20
Given f(x)= ((x−1)/(x+1)) . If f^2 (x)=f(f(x)),   f^3 (x)=f(f(f(x))) , f^(1998) (x) = g(x)  then ∫_(1/e) ^1 g(x) dx = _?
Givenf(x)=x1x+1.Iff2(x)=f(f(x)),f3(x)=f(f(f(x))),f1998(x)=g(x)then1e1g(x)dx=_?
Answered by 1549442205PVT last updated on 09/Oct/20
f^2 (x)=((((x−1)/(x+1))−1)/(((x−1)/(x+1))+1))=((−2)/(2x))=−(1/x)  f^3 (x)=−(1/((x−1)/(x+1)))=−((x+1)/(x−1))  f^4 (x)=−((((x−1)/(x+1))+1)/(((x−1)/(x+1))−1))=−((2x)/(−2))=x  f^5 (x)=((x−1)/(x+1))=f(x)  From that we get the sequence  f (x)=f^5 (x)=f^9 (x)=...f^(4k+1) (x)  Since 1998=4.499+2,we infer  g(x)=f^(1998(x)) =f^2 (x)=−(1/x).Therefore,  ∫_(1/e) ^( 1) g(x)dx=∫_(1/e) ^( 1) (−(1/x))dx=−ln∣x∣_(1/e) ^1   =ln((1/e))=ln1−lne=0−1=−1
f2(x)=x1x+11x1x+1+1=22x=1xf3(x)=1x1x+1=x+1x1f4(x)=x1x+1+1x1x+11=2x2=xf5(x)=x1x+1=f(x)Fromthatwegetthesequencef(x)=f5(x)=f9(x)=f4k+1(x)Since1998=4.499+2,weinferg(x)=f1998(x)=f2(x)=1x.Therefore,1e1g(x)dx=1e1(1x)dx=lnx1/e1=ln(1e)=ln1lne=01=1
Commented by bemath last updated on 09/Oct/20
yes...santuyy
yessantuyy

Leave a Reply

Your email address will not be published. Required fields are marked *