Menu Close

Given-f-x-x-x-1-x-2-x-n-find-the-value-of-f-0-




Question Number 108043 by ZiYangLee last updated on 14/Aug/20
Given f(x)=x(x+1)(x+2)...(x+n)  find the value of f′(0).
Givenf(x)=x(x+1)(x+2)(x+n)findthevalueoff(0).
Answered by hgrocks last updated on 14/Aug/20
ln(f(x)) = Σ_(k=0) ^n ln(x+k)  ((f′(x))/(f(x))) = (1/x) + (1/(x+1)) +(1/(x+2)) +.......(1/(x+n))  ((f′(0))/(f(0))) = (1/x) + 1 + (1/2) +(1/3)+.........(1/n)  f′(0) = Π_(k=1) ^n (x+k)_(x=0)  + f(0)(H_n )             = 1.2.3.....n + 0 × H_n              = n!
ln(f(x))=nk=0ln(x+k)f(x)f(x)=1x+1x+1+1x+2+.1x+nf(0)f(0)=1x+1+12+13+1nf(0)=nk=1(x+k)x=0+f(0)(Hn)=1.2.3..n+0×Hn=n!
Commented by ZiYangLee last updated on 14/Aug/20
wow...
wow
Answered by Her_Majesty last updated on 14/Aug/20
f(x)=x(x+1)(x+2)...(x+n)=  =x^(n+1) +(....)x^2 +n!x  f′(x)=(n+1)x^n +2(...)x+n!  f′(0)=n!
f(x)=x(x+1)(x+2)(x+n)==xn+1+(.)x2+n!xf(x)=(n+1)xn+2()x+n!f(0)=n!

Leave a Reply

Your email address will not be published. Required fields are marked *