Menu Close

Given-for-x-y-z-gt-0-2-x-3-y-5-z-Arrange-2x-3y-5z-in-increasing-order-




Question Number 79978 by mr W last updated on 29/Jan/20
Given for x,y,z>0:  2^x =3^y =5^z   Arrange 2x, 3y, 5z in increasing order.
Givenforx,y,z>0:2x=3y=5zArrange2x,3y,5zinincreasingorder.
Answered by mind is power last updated on 29/Jan/20
xln(2)=yln(3)=zln(5)  y=((xln(2))/(ln(3)))  z=((xln(2))/(ln(5)))  5z=(5/(ln(5))).ln(2)x  3y=((3ln(2))/(ln(3)))x  ln(8)<ln(9)⇒  3ln(2)<2ln(3)  ⇒((3ln(2))/(ln(3)))<2  ⇒3y=((3ln(2))/(ln(3)))x<2x  ((5ln(2))/(ln(5)))>2⇔ln(32)>ln(25) True⇒  5z=((5ln(2))/(ln(5)))x>2x⇒5z>2x>3y
xln(2)=yln(3)=zln(5)y=xln(2)ln(3)z=xln(2)ln(5)5z=5ln(5).ln(2)x3y=3ln(2)ln(3)xln(8)<ln(9)3ln(2)<2ln(3)3ln(2)ln(3)<23y=3ln(2)ln(3)x<2x5ln(2)ln(5)>2ln(32)>ln(25)True5z=5ln(2)ln(5)x>2x5z>2x>3y
Answered by key of knowledge last updated on 29/Jan/20
2^x =3^y =5^z ⇒x.log_3 2=y=z.log_3 5  2x=2((y/(1og_3 2)))=y.2log_2 3≈3.16y  5z=...=z×5log_5 3≈3.41y  ⇒3y<2x<5z
2x=3y=5zx.log32=y=z.log352x=2(y1og32)=y.2log233.16y5z==z×5log533.41y3y<2x<5z
Answered by mr W last updated on 30/Jan/20
2^x =3^y =5^z =t>0  x ln 2=y ln 3=z ln 5=ln t=s  ⇒x=(s/(ln 2))  ⇒2x=(s/((1/2)ln 2))=(s/(ln (√2)))  ⇒(1/(2x))=((ln (√2))/s)  similarly  ⇒(1/(3y))=((ln (3)^(1/3) )/s)  ⇒(1/(5z))=((ln (5)^(1/5) )/s)  now we only need to compare the  numbers (√2), (3)^(1/3) , (5)^(1/5) .  3^2 =9>8=2^3   ⇒3>((√2))^3   ⇒(3)^(1/3) >(√2)  2^5 =32>25=5^2   ⇒2>((5)^(1/5) )^2   ⇒(√2)>(5)^(1/5)     ⇒(3)^(1/3) >(√2)>(5)^(1/5)   ⇒(1/(3y))>(1/(2x))>(1/(5z))  ⇒3y<2x<5z
2x=3y=5z=t>0xln2=yln3=zln5=lnt=sx=sln22x=s12ln2=sln212x=ln2ssimilarly13y=ln33s15z=ln55snowweonlyneedtocomparethenumbers2,33,55.32=9>8=233>(2)333>225=32>25=522>(55)22>5533>2>5513y>12x>15z3y<2x<5z

Leave a Reply

Your email address will not be published. Required fields are marked *