Menu Close

Given-function-f-R-R-x-2-f-x-f-1-x-2x-x-4-f-2019-




Question Number 79532 by naka3546 last updated on 26/Jan/20
Given  function  f : R  ⇒  R          x^2  f(x) + f(1 − x)  =  2x − x^4   f(2019)  =  ?
Givenfunctionf:RRx2f(x)+f(1x)=2xx4f(2019)=?
Commented by john santu last updated on 26/Jan/20
(1) x = 2019   (2019)^2 f(2019)+f(−2018)=2×(2019)−(2019)^4   (2) x=−2018   (−2018)^2 f(−2018)+f(2019)=2×(−2018)−(−2018)^4   now you get the result
(1)x=2019(2019)2f(2019)+f(2018)=2×(2019)(2019)4(2)x=2018(2018)2f(2018)+f(2019)=2×(2018)(2018)4nowyougettheresult
Commented by mathmax by abdo last updated on 26/Jan/20
x^2 f(x)+f(1−x)=2x−x^4  let change x by 1−x ⇒  (1−x)f(1−x)+f(x)=2(1−x)−(1−x)^4   so we get the systeme   { ((x^2 f(x)+f(1−x)=2x−x^4 )),((f(x) +(1−x)^2 f(1−x)=2(1−x)−(1−x)^4 )) :}  Δ_s = determinant (((x^2            1)),((1          (1−x)^2 )))=x^2 (1−x)^2 −1 ⇒ f(x)=( determinant (((2x−x^4                                    1)),((2(1−x)−(1−x)^4         ( 1−x)^2 )))/(x^2 −x^3 −1))  =(((2x−x^4 )(1−x)^2 −2(1−x)+(1−x)^4 )/(x^2 (1−x)^2 −1)) ⇒  f(2019) =(((2×2019−(2019)^4 )(2018)^2 +2×(2018)+(2018)^4 )/((2019)^2 ×2018^2 −1))
x2f(x)+f(1x)=2xx4letchangexby1x(1x)f(1x)+f(x)=2(1x)(1x)4sowegetthesysteme{x2f(x)+f(1x)=2xx4f(x)+(1x)2f(1x)=2(1x)(1x)4Δs=|x211(1x)2|=x2(1x)21f(x)=|2xx412(1x)(1x)4(1x)2|x2x31=(2xx4)(1x)22(1x)+(1x)4x2(1x)21f(2019)=(2×2019(2019)4)(2018)2+2×(2018)+(2018)4(2019)2×201821
Answered by mr W last updated on 26/Jan/20
x^2  f(x) + f(1 − x)  =  2x − x^4    ...(i)  let t=1−x ⇒x=1−t  (1−t)^2  f(1−t) + f(t)  =  2(1−t) −(1−t )^4   or  (1−x)^2  f(1−x) + f(x)  =  2(1−x) −(1−x )^4    ...(ii)  (i)×(1−x)^2 −(ii):  [x^2 (1−x)^2 −1]f(x) =  2x(1−x)^2 −2(1−x)+(1−x)^4  − x^4 (1−x)^2   [x^2 (1−x)^2 −1]f(x) =(x−1){2+2(x−1)x+(x−1)^3 −(x−1)x^4 }  ⇒f(x) =(((x−1){2+2(x−1)x+(x−1)^3 −(x−1)x^4 })/(x^2 (1−x)^2 −1))  f(2019) =((2018{2+2×2018×2019+2018^3 −2018×2019^4 })/(2018^2 ×2019^2 −1))  f(2019)=−4076360
x2f(x)+f(1x)=2xx4(i)lett=1xx=1t(1t)2f(1t)+f(t)=2(1t)(1t)4or(1x)2f(1x)+f(x)=2(1x)(1x)4(ii)(i)×(1x)2(ii):[x2(1x)21]f(x)=2x(1x)22(1x)+(1x)4x4(1x)2[x2(1x)21]f(x)=(x1){2+2(x1)x+(x1)3(x1)x4}f(x)=(x1){2+2(x1)x+(x1)3(x1)x4}x2(1x)21f(2019)=2018{2+2×2018×2019+201832018×20194}20182×201921f(2019)=4076360

Leave a Reply

Your email address will not be published. Required fields are marked *