Menu Close

Given-I-m-n-1-e-x-m-ln-x-n-dx-where-m-n-N-Show-that-1-m-I-m-n-e-m-1-nI-m-n-1-for-m-gt-0-and-n-gt-0-also-evaluate-I-2-3-




Question Number 107596 by Rio Michael last updated on 11/Aug/20
Given    I_(m,n)  = ∫_1 ^e x^m  (ln x)^n  dx where m,n ∈ N^∗   Show that (1 + m)I_(m,n)  = e^(m+1) −nI_(m,n−1)  for m >0 and n>0  also, evaluate I_(2,3)
GivenIm,n=e1xm(lnx)ndxwherem,nNShowthat(1+m)Im,n=em+1nIm,n1form>0andn>0also,evaluateI2,3
Answered by Ar Brandon last updated on 11/Aug/20
I= ∫_1 ^e x^m  (ln x)^n  dx    =[(lnx)^n ∫x^m −∫{((d(lnx)^n )/dx)∙∫x^m dx}dx]_1 ^e     =[(((lnx)^n x^(m+1) )/(m+1))]_1 ^e −(n/(m+1))∫_1 ^e x^m (lnx)^(n−1) dx    =(e^(m+1) /(m+1))−(n/(m+1))I_((m,n−1))   ⇒(m+1)I_(m,n) =e^(m+1) −nI_((m,n−1))
I=e1xm(lnx)ndx=[(lnx)nxm{d(lnx)ndxxmdx}dx]1e=[(lnx)nxm+1m+1]1enm+11exm(lnx)n1dx=em+1m+1nm+1I(m,n1)(m+1)Im,n=em+1nI(m,n1)
Answered by hgrocks last updated on 11/Aug/20

Leave a Reply

Your email address will not be published. Required fields are marked *