Given-I-m-n-1-e-x-m-ln-x-n-dx-where-m-n-N-Show-that-1-m-I-m-n-e-m-1-nI-m-n-1-for-m-gt-0-and-n-gt-0-also-evaluate-I-2-3- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 107596 by Rio Michael last updated on 11/Aug/20 GivenIm,n=∫e1xm(lnx)ndxwherem,n∈N∗Showthat(1+m)Im,n=em+1−nIm,n−1form>0andn>0also,evaluateI2,3 Answered by Ar Brandon last updated on 11/Aug/20 I=∫e1xm(lnx)ndx=[(lnx)n∫xm−∫{d(lnx)ndx⋅∫xmdx}dx]1e=[(lnx)nxm+1m+1]1e−nm+1∫1exm(lnx)n−1dx=em+1m+1−nm+1I(m,n−1)⇒(m+1)Im,n=em+1−nI(m,n−1) Answered by hgrocks last updated on 11/Aug/20 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-173129Next Next post: Calculate-1-2-3-4-5- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.