Question Number 105632 by Ar Brandon last updated on 30/Jul/20
$$\mathrm{Given}\:\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} }{\mathrm{n}!}\mathrm{e}^{\mathrm{x}} \mathrm{dx}\:,\:\mathrm{n}\in\mathbb{N} \\ $$$$\mathrm{a}\backslash\mathrm{Show}\:\mathrm{that}\:\forall\mathrm{x}\in\left[\mathrm{0},\mathrm{1}\right],\:\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} \mathrm{e}^{\mathrm{x}} \leqslant\mathrm{e}\:\mathrm{and}\:\mathrm{deduce}\:\mathrm{that}\:\mathrm{the}\: \\ $$$$\mathrm{Sequence}\:\left(\mathrm{I}_{\mathrm{n}} \right)_{\mathrm{n}} \:\mathrm{converges}\:\mathrm{to}\:\mathrm{zero}. \\ $$$$\mathrm{b}\backslash\mathrm{Establish}\:\mathrm{a}\:\mathrm{recurrence}\:\mathrm{relation}\:\mathrm{between}\:\mathrm{I}_{\mathrm{n}} \:\mathrm{and}\:\mathrm{I}_{\mathrm{n}+\mathrm{1}} \\ $$$$\mathrm{c}\backslash\:\mathrm{Deduce}\:\mathrm{that}\:\mathrm{e}=\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\left(\frac{\mathrm{1}}{\mathrm{k}!}\right) \\ $$
Answered by mathmax by abdo last updated on 31/Jul/20
$$\left.\mathrm{1}\right)\mathrm{x}\in\left[\mathrm{0},\mathrm{1}\right]\:\Rightarrow\mathrm{e}^{\mathrm{x}} \:\leqslant\mathrm{e}\:\mathrm{and}\:\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} \:\leqslant\mathrm{1}\:\Rightarrow\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} \:\mathrm{e}^{\mathrm{x}} \:\leqslant\mathrm{e}\:\Rightarrow \\ $$$$\frac{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} }{\mathrm{n}!}\mathrm{e}^{\mathrm{x}} \:\leqslant\frac{\mathrm{e}}{\mathrm{n}!}\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} }{\mathrm{n}!}\mathrm{e}^{\mathrm{x}} \:\mathrm{dx}\:\leqslant\frac{\mathrm{e}}{\mathrm{n}!}\:\rightarrow\mathrm{0}\left(\mathrm{n}\rightarrow+\infty\right)\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{I}_{\mathrm{n}} =\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{we}\:\mathrm{have}\:\mathrm{I}_{\mathrm{n}+\mathrm{1}} =\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)!}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}+\mathrm{1}} \:\mathrm{e}^{\mathrm{x}} \:\mathrm{dx} \\ $$$$\Rightarrow\left(\mathrm{n}+\mathrm{1}\right)!\mathrm{I}_{\mathrm{n}+\mathrm{1}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}+\mathrm{1}} \:\mathrm{e}^{\mathrm{x}} \:\:\mathrm{by}\:\mathrm{parts}\:\mathrm{u}\:=\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}+\mathrm{1}} \left[\mathrm{and}\:\mathrm{v}^{'} =\mathrm{e}^{\mathrm{x}} \right. \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}+\mathrm{1}} \:\mathrm{e}^{\mathrm{x}} \:\mathrm{dx}\:=\left[\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}+\mathrm{1}} \mathrm{e}^{\mathrm{x}} \right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} −\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} \:\mathrm{e}^{\mathrm{x}} \:\mathrm{dx} \\ $$$$=−\mathrm{1}\:+\left(\mathrm{n}+\mathrm{1}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{n}} \:\mathrm{e}^{\mathrm{x}} \:\mathrm{dx}\:=−\mathrm{1}+\left(\mathrm{n}+\mathrm{1}\right)\mathrm{n}!\:\mathrm{I}_{\mathrm{n}} =−\mathrm{1}+\left(\mathrm{n}+\mathrm{1}\right)!\:\mathrm{I}_{\mathrm{n}} \\ $$$$\left(\mathrm{n}+\mathrm{1}\right)!\:\mathrm{I}_{\mathrm{n}+\mathrm{1}} =−\mathrm{1}+\left(\mathrm{n}+\mathrm{1}\right)!\mathrm{I}_{\mathrm{n}} \:\Rightarrow\mathrm{I}_{\mathrm{n}+\mathrm{1}} =\mathrm{I}_{\mathrm{n}} −\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)!}\:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)!}\:=\mathrm{I}_{\mathrm{n}} −\mathrm{I}_{\mathrm{n}+\mathrm{1}} \:\Rightarrow\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \:\frac{\mathrm{1}}{\left(\mathrm{k}+\mathrm{1}\right)!}\:=\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{n}} \left(\mathrm{I}_{\mathrm{k}} −\mathrm{I}_{\mathrm{k}+\mathrm{1}} \right)\:\Rightarrow \\ $$$$\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}+\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{k}!}\:=\mathrm{I}_{\mathrm{o}} −\mathrm{I}_{\mathrm{n}+\mathrm{1}} +\mathrm{1}\:\Rightarrow\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}+\mathrm{1}} \:\frac{\mathrm{1}}{\mathrm{k}!}\:=\mathrm{I}_{\mathrm{0}} +\mathrm{1}\:\Rightarrow \\ $$$$\sum_{\mathrm{k}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{k}!}\:=\mathrm{I}_{\mathrm{o}} +\mathrm{1}\:\:\mathrm{but}\:\mathrm{I}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{e}^{\mathrm{x}} \:=\mathrm{e}−\mathrm{1}\:\Rightarrow\sum_{\mathrm{k}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{k}!}\:=\mathrm{e} \\ $$
Commented by Ar Brandon last updated on 31/Jul/20
Merci monsieur
Commented by mathmax by abdo last updated on 01/Aug/20
$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{sir}. \\ $$