Question Number 105632 by Ar Brandon last updated on 30/Jul/20
![Given I_n =∫_0 ^1 (((1−x)^n )/(n!))e^x dx , n∈N a\Show that ∀x∈[0,1], (1−x)^n e^x ≤e and deduce that the Sequence (I_n )_n converges to zero. b\Establish a recurrence relation between I_n and I_(n+1) c\ Deduce that e=lim_(n→∞) Σ_(k=0) ^n ((1/(k!)))](https://www.tinkutara.com/question/Q105632.png)
Answered by mathmax by abdo last updated on 31/Jul/20
![1)x∈[0,1] ⇒e^x ≤e and (1−x)^n ≤1 ⇒(1−x)^n e^x ≤e ⇒ (((1−x)^n )/(n!))e^x ≤(e/(n!)) ⇒∫_0 ^1 (((1−x)^n )/(n!))e^x dx ≤(e/(n!)) →0(n→+∞) ⇒ lim_(n→+∞) I_n =0 2) we have I_(n+1) =(1/((n+1)!))∫_0 ^1 (1−x)^(n+1) e^x dx ⇒(n+1)!I_(n+1) =∫_0 ^1 (1−x)^(n+1) e^x by parts u =(1−x)^(n+1) [and v^′ =e^x ⇒∫_0 ^1 (1−x)^(n+1) e^x dx =[(1−x)^(n+1) e^x ]_0 ^1 −∫_0 ^1 −(n+1)(1−x)^n e^x dx =−1 +(n+1)∫_0 ^1 (1−x)^n e^x dx =−1+(n+1)n! I_n =−1+(n+1)! I_n (n+1)! I_(n+1) =−1+(n+1)!I_n ⇒I_(n+1) =I_n −(1/((n+1)!)) ⇒ (1/((n+1)!)) =I_n −I_(n+1) ⇒Σ_(k=0) ^n (1/((k+1)!)) =Σ_(k=0) ^n (I_k −I_(k+1) ) ⇒ Σ_(k=1) ^(n+1) (1/(k!)) =I_o −I_(n+1) +1 ⇒lim_(n→+∞) Σ_(k=1) ^(n+1) (1/(k!)) =I_0 +1 ⇒ Σ_(k=0) ^∞ (1/(k!)) =I_o +1 but I_0 =∫_0 ^1 e^x =e−1 ⇒Σ_(k=0) ^∞ (1/(k!)) =e](https://www.tinkutara.com/question/Q105798.png)
Commented by Ar Brandon last updated on 31/Jul/20
Merci monsieur��
Commented by mathmax by abdo last updated on 01/Aug/20
