Menu Close

Given-I-n-0-1-1-x-n-n-e-x-dx-n-N-a-Show-that-x-0-1-1-x-n-e-x-e-and-deduce-that-the-Sequence-I-n-n-converges-to-zero-b-Establish-a-recurrence-relation-between-I-n-and-I-n-




Question Number 105632 by Ar Brandon last updated on 30/Jul/20
Given I_n =∫_0 ^1 (((1−x)^n )/(n!))e^x dx , n∈N  a\Show that ∀x∈[0,1], (1−x)^n e^x ≤e and deduce that the   Sequence (I_n )_n  converges to zero.  b\Establish a recurrence relation between I_n  and I_(n+1)   c\ Deduce that e=lim_(n→∞) Σ_(k=0) ^n ((1/(k!)))
GivenIn=01(1x)nn!exdx,nNaShowthatx[0,1],(1x)nexeanddeducethattheSequence(In)nconvergestozero.bEstablisharecurrencerelationbetweenInandIn+1cDeducethate=limnnk=0(1k!)
Answered by mathmax by abdo last updated on 31/Jul/20
1)x∈[0,1] ⇒e^x  ≤e and (1−x)^n  ≤1 ⇒(1−x)^n  e^x  ≤e ⇒  (((1−x)^n )/(n!))e^x  ≤(e/(n!)) ⇒∫_0 ^1  (((1−x)^n )/(n!))e^x  dx ≤(e/(n!)) →0(n→+∞) ⇒  lim_(n→+∞)  I_n =0  2) we have I_(n+1) =(1/((n+1)!))∫_0 ^1 (1−x)^(n+1)  e^x  dx  ⇒(n+1)!I_(n+1) =∫_0 ^1 (1−x)^(n+1)  e^x   by parts u =(1−x)^(n+1) [and v^′ =e^x   ⇒∫_0 ^1 (1−x)^(n+1)  e^x  dx =[(1−x)^(n+1) e^x ]_0 ^1 −∫_0 ^1 −(n+1)(1−x)^n  e^x  dx  =−1 +(n+1)∫_0 ^1 (1−x)^n  e^x  dx =−1+(n+1)n! I_n =−1+(n+1)! I_n   (n+1)! I_(n+1) =−1+(n+1)!I_n  ⇒I_(n+1) =I_n −(1/((n+1)!)) ⇒  (1/((n+1)!)) =I_n −I_(n+1)  ⇒Σ_(k=0) ^n  (1/((k+1)!)) =Σ_(k=0) ^n (I_k −I_(k+1) ) ⇒  Σ_(k=1) ^(n+1)  (1/(k!)) =I_o −I_(n+1) +1 ⇒lim_(n→+∞) Σ_(k=1) ^(n+1)  (1/(k!)) =I_0 +1 ⇒  Σ_(k=0) ^∞  (1/(k!)) =I_o +1  but I_0 =∫_0 ^1 e^x  =e−1 ⇒Σ_(k=0) ^∞  (1/(k!)) =e
1)x[0,1]exeand(1x)n1(1x)nexe(1x)nn!exen!01(1x)nn!exdxen!0(n+)limn+In=02)wehaveIn+1=1(n+1)!01(1x)n+1exdx(n+1)!In+1=01(1x)n+1exbypartsu=(1x)n+1[andv=ex01(1x)n+1exdx=[(1x)n+1ex]0101(n+1)(1x)nexdx=1+(n+1)01(1x)nexdx=1+(n+1)n!In=1+(n+1)!In(n+1)!In+1=1+(n+1)!InIn+1=In1(n+1)!1(n+1)!=InIn+1k=0n1(k+1)!=k=0n(IkIk+1)k=1n+11k!=IoIn+1+1limn+k=1n+11k!=I0+1k=01k!=Io+1butI0=01ex=e1k=01k!=e
Commented by Ar Brandon last updated on 31/Jul/20
Merci monsieur��
Commented by mathmax by abdo last updated on 01/Aug/20
you are welcome sir.
youarewelcomesir.

Leave a Reply

Your email address will not be published. Required fields are marked *