Menu Close

Given-I-n-npi-n-1-pi-e-x-sinx-dx-n-N-1-Find-a-relation-between-I-n-1-and-I-n-




Question Number 155496 by mathocean1 last updated on 01/Oct/21
Given I_n =∫_(nπ) ^((n+1)π) e^(−x) sinx dx , n∈N.  1. Find a relation between I_(n+1) and I_n .
GivenIn=(n+1)πnπexsinxdx,nN.1.FindarelationbetweenIn+1andIn.
Answered by ArielVyny last updated on 01/Oct/21
I_n =∫_(nπ) ^((n+1)π) e^(−x) sinxdx  du=e^(−x) →u=−e^(−x)   v=sinx→dv=cosx  I_n =[−e^(−x) sinx]_(nπ) ^((n+1)π) +∫_(nπ) ^((n+1)) e^(−x) cosxdx  du=e^(−x) →u=−e^(−x)   v=cosx→dv=−sinx  2I_n =−[e^(−x) sinx+e^(−x) cosx]_(nπ) ^((n+1)π)   2I_n =−[e^(−π(n+1)) sin((n+1)π)+e^(−π(n+1)) cos((n+1)π)−e^(−nπ) sin(nπ)−e^(−nπ) cos(nπ)]  2I_n =−[e^(−π(n+1)) (sin(nπ)cosπ+cos(nπ)sinπ)+e^(−π(n+1)) (cosnπcosπ+sin(nπ)sin(π)−e^(−nπ) sin(nπ)−e^(−nπ) cos(nπ)]  2I_n =−[−e^(−π(n+1)) (−1)^n −e^(−nπ) (−1)^n ]  2I_n =(−1)^n e^(−π(n+1)) +(−1)^n e^(−nπ)   2I_(n+1) =(−1)^(n+1) e^(−π(n+2)) +(−1)^n e^(−(n+1)π)   2I_(n+1) −2I_n =(−1)^(n+1) e^(−π(n+2)) +(−1)^(n+1) e^(−nπ)   I_(n+1) −I_n =(((−1)^(n+1) e^(−π(n+2)) +(−1)^(n+1) e^(−nπ) )/2)
In=nπ(n+1)πexsinxdxdu=exu=exv=sinxdv=cosxIn=[exsinx]nπ(n+1)π+nπ(n+1)excosxdxdu=exu=exv=cosxdv=sinx2In=[exsinx+excosx]nπ(n+1)π2In=[eπ(n+1)sin((n+1)π)+eπ(n+1)cos((n+1)π)enπsin(nπ)enπcos(nπ)]2In=[eπ(n+1)(sin(nπ)cosπ+cos(nπ)sinπ)+eπ(n+1)(cosnπcosπ+sin(nπ)sin(π)enπsin(nπ)enπcos(nπ)]2In=[eπ(n+1)(1)nenπ(1)n]2In=(1)neπ(n+1)+(1)nenπ2In+1=(1)n+1eπ(n+2)+(1)ne(n+1)π2In+12In=(1)n+1eπ(n+2)+(1)n+1enπIn+1In=(1)n+1eπ(n+2)+(1)n+1enπ2
Commented by mathocean1 last updated on 22/Oct/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *