Given-I-n-npi-n-1-pi-e-x-sinx-dx-n-N-1-Find-a-relation-between-I-n-1-and-I-n- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 155496 by mathocean1 last updated on 01/Oct/21 GivenIn=∫(n+1)πnπe−xsinxdx,n∈N.1.FindarelationbetweenIn+1andIn. Answered by ArielVyny last updated on 01/Oct/21 In=∫nπ(n+1)πe−xsinxdxdu=e−x→u=−e−xv=sinx→dv=cosxIn=[−e−xsinx]nπ(n+1)π+∫nπ(n+1)e−xcosxdxdu=e−x→u=−e−xv=cosx→dv=−sinx2In=−[e−xsinx+e−xcosx]nπ(n+1)π2In=−[e−π(n+1)sin((n+1)π)+e−π(n+1)cos((n+1)π)−e−nπsin(nπ)−e−nπcos(nπ)]2In=−[e−π(n+1)(sin(nπ)cosπ+cos(nπ)sinπ)+e−π(n+1)(cosnπcosπ+sin(nπ)sin(π)−e−nπsin(nπ)−e−nπcos(nπ)]2In=−[−e−π(n+1)(−1)n−e−nπ(−1)n]2In=(−1)ne−π(n+1)+(−1)ne−nπ2In+1=(−1)n+1e−π(n+2)+(−1)ne−(n+1)π2In+1−2In=(−1)n+1e−π(n+2)+(−1)n+1e−nπIn+1−In=(−1)n+1e−π(n+2)+(−1)n+1e−nπ2 Commented by mathocean1 last updated on 22/Oct/21 thankyou Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-that-1-sin-x-1-cos-3-1sin-x-1-cosec-x-tanx-Next Next post: Question-155500 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.