Menu Close

Given-implicit-expression-x-tan-y-tan-where-x-y-and-is-variable-Prove-that-dy-dx-1-y-2-1-x-2-0-




Question Number 121633 by liberty last updated on 10/Nov/20
Given implicit expression  { ((x=tan α)),((y=tan β)) :}  where x,y,α and β is variable. Prove that   (dy/dx) + ((1+y^2 )/(1+x^2 )) = 0 .
Givenimplicitexpression{x=tanαy=tanβwherex,y,αandβisvariable.Provethatdydx+1+y21+x2=0.
Commented by Dwaipayan Shikari last updated on 10/Nov/20
x=tanα⇒tan^(−1) x=α⇒(1/(1+x^2 ))=(dα/dx)  y=tanβ⇒tan^(−1) y=β⇒(1/(1+y^2 ))=(dβ/dy)  (dy/dx).(dα/dβ)=((1+y^2 )/(1+x^2 ))
x=tanαtan1x=α11+x2=dαdxy=tanβtan1y=β11+y2=dβdydydx.dαdβ=1+y21+x2
Commented by liberty last updated on 10/Nov/20
not proved?
notproved?
Commented by Dwaipayan Shikari last updated on 10/Nov/20
We have to know relation between  α and β
Wehavetoknowrelationbetweenαandβ
Commented by Dwaipayan Shikari last updated on 10/Nov/20
If α+β=0  then  −(dy/dx)=((1+y^2 )/(1+x^2 ))⇒(dy/dx)+((1+y^2 )/(1+x^2 ))=0
Ifα+β=0thendydx=1+y21+x2dydx+1+y21+x2=0

Leave a Reply

Your email address will not be published. Required fields are marked *