Menu Close

Given-in-an-isosceles-triangle-a-lateral-side-b-and-the-base-angle-Compute-the-distance-from-the-centre-of-the-inscribed-circle-to-the-centre-of-the-circumscribed-circle-




Question Number 19586 by ajfour last updated on 13/Aug/17
Given in an isosceles triangle a  lateral side b and the base angle α.  Compute the distance from the  centre of the inscribed circle to the  centre of the circumscribed circle.
$$\mathrm{Given}\:\mathrm{in}\:\mathrm{an}\:\mathrm{isosceles}\:\mathrm{triangle}\:\mathrm{a} \\ $$$$\mathrm{lateral}\:\mathrm{side}\:\mathrm{b}\:\mathrm{and}\:\mathrm{the}\:\mathrm{base}\:\mathrm{angle}\:\alpha. \\ $$$$\mathrm{Compute}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{inscribed}\:\mathrm{circle}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circumscribed}\:\mathrm{circle}. \\ $$
Commented by Tinkutara last updated on 13/Aug/17
R = (b/(2 sin α)) , r = ((b cos α)/(cos (α/2)))
$${R}\:=\:\frac{{b}}{\mathrm{2}\:\mathrm{sin}\:\alpha}\:,\:{r}\:=\:\frac{{b}\:\mathrm{cos}\:\alpha}{\mathrm{cos}\:\frac{\alpha}{\mathrm{2}}} \\ $$
Commented by ajfour last updated on 13/Aug/17
Commented by Tinkutara last updated on 13/Aug/17
I found this on Wikipedia by Euler′s  Theorem in Geometry.  ∣IO∣ = (√(R(R − 2r))). Proof is given on  the same page.
$$\mathrm{I}\:\mathrm{found}\:\mathrm{this}\:\mathrm{on}\:\mathrm{Wikipedia}\:\mathrm{by}\:\mathrm{Euler}'\mathrm{s} \\ $$$$\mathrm{Theorem}\:\mathrm{in}\:\mathrm{Geometry}. \\ $$$$\mid{IO}\mid\:=\:\sqrt{{R}\left({R}\:−\:\mathrm{2}{r}\right)}.\:\mathrm{Proof}\:\mathrm{is}\:\mathrm{given}\:\mathrm{on} \\ $$$$\mathrm{the}\:\mathrm{same}\:\mathrm{page}. \\ $$
Commented by ajfour last updated on 13/Aug/17
required to find answer in terms  of b, and α .
$$\mathrm{required}\:\mathrm{to}\:\mathrm{find}\:\mathrm{answer}\:\mathrm{in}\:\mathrm{terms} \\ $$$$\mathrm{of}\:\mathrm{b},\:\mathrm{and}\:\alpha\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *