Menu Close

Given-k-N-1-justify-these-relations-3-2k-1-2-8-and-3-2k-1-1-4-8-2-Given-E-2-n-3-m-1-n-and-m-are-unknowed-Show-that-if-m-is-even-E-does-not-have-solution-Deduct-from-the




Question Number 119580 by mathocean1 last updated on 25/Oct/20
Given k ∈ N.  1) justify these relations:  3^(2k) +1≡2[8] and 3^(2k+1) +1≡4[8].  2) Given (E): 2^n −3^m =1. n and m are unknowed.  • Show that if m is even , (E) does not have   solution.  ■ Deduct from the first question 1) that the  couple (2;1) is the only solution of (E).
GivenkN.1)justifytheserelations:32k+12[8]and32k+1+14[8].2)Given(E):2n3m=1.nandmareunknowed.Showthatifmiseven,(E)doesnothavesolution.◼Deductfromthefirstquestion1)thatthecouple(2;1)istheonlysolutionof(E).
Answered by mindispower last updated on 25/Oct/20
3^(2k+1) +1≡4[8] ?
32k+1+14[8]?
Commented by mathocean1 last updated on 25/Oct/20
yes sir; or there is an error ?
yessir;orthereisanerror?
Answered by mindispower last updated on 25/Oct/20
3^(2k) +1=9^k +1≡1^k +1=2[8]  3^(2k+1) +1=9^k .3+1≡3.(1)^k +1≡4]8]  (E)⇔2^n −(3^m +1)=0  m=2k  ⇒2^n =(1+3^(2k) )≡2[8]  withe 1⇒n=1  but n=1 (E)⇒2−9^k =1⇒k=0  (E) has solution (n,m)=(1,0)  m=2k+1  ⇒2^n =(1+3^(2k+1) )≡4(8)...withe Quation 1  ⇒n=2,  4−3.9^k =1⇒k=0  m=2.0+1=1,n=2  solution are(n,m)∈{(1,0);(2,1)}
32k+1=9k+11k+1=2[8]32k+1+1=9k.3+13.(1)k+14]8](E)2n(3m+1)=0m=2k2n=(1+32k)2[8]withe1n=1butn=1(E)29k=1k=0(E)hassolution(n,m)=(1,0)m=2k+12n=(1+32k+1)4(8)witheQuation1n=2,43.9k=1k=0m=2.0+1=1,n=2solutionare(n,m){(1,0);(2,1)}
Answered by 1549442205PVT last updated on 25/Oct/20
1a−We have 3^(2k) +1=9^k +1=(8+1)^k +1  =Σ_(m=0) ^(k) C_k ^m 8^(k−m) =(8^k +k.8^(k−1) +((k(k−))/2)8^(k−2)   +...+8+1)+1≡2(mod8)(q.e.d)  b−By above proof we have 3^(2k) +1=8q+2  ⇒3^(2k+1) +1=3.(3^(2k) +1)−2=3.(8q+2)  −2=3.8q+4≡4(mod8)( q.e.d)  2)a−Consider the equation 2^n −3^m =1  If m is even then 2^n =3^(2k) +1(∗)  (by above proof ).For n=0,1,2 we see  the equation (∗) has no roots  For n≥3 L.H.S (∗)is divisible by 8  while R.H.S isn′t divisible 8 since  3^(2k) +1≡2(mod8)(by above proof).  Hence this case the equation has no roots   (q.e.d)  b−We see that (by directly checking)  the (n,m)=(2,1) satisfy the equation  2^n −3^m =1(1).We prove that is unique  solution of given equation.Indeed,  When m is even the equation has no  roots (above proof).We now consider  the case m is odd.⇒m=2k+1.Then  (1)⇔2^n =3^(2k+1) +1(∗∗)  For n=0,1 It is clear that the equation  (∗∗)has no roots  For n≥2 L.H.S(∗∗)is divisible by 4  while R.H.S (∗∗)isn′t divisible (by  above proof 1b).Hence this case the  given has no roots which means the  (n,m)=(2,1) is unique solution of the  given equation (q.e.d)
1aWehave32k+1=9k+1=(8+1)k+1=Σkm=0Ckm8km=(8k+k.8k1+k(k)28k2++8+1)+12(mod8)(q.e.d)bByaboveproofwehave32k+1=8q+232k+1+1=3.(32k+1)2=3.(8q+2)2=3.8q+44(mod8)(q.e.d)2)aConsidertheequation2n3m=1Ifmiseventhen2n=32k+1()(byaboveproof).Forn=0,1,2weseetheequation()hasnorootsForn3L.H.S()isdivisibleby8whileR.H.Sisntdivisible8since32k+12(mod8)(byaboveproof).Hencethiscasetheequationhasnoroots(q.e.d)bWeseethat(bydirectlychecking)the(n,m)=(2,1)satisfytheequation2n3m=1(1).Weprovethatisuniquesolutionofgivenequation.Indeed,Whenmiseventheequationhasnoroots(aboveproof).Wenowconsiderthecasemisodd.m=2k+1.Then(1)2n=32k+1+1()Forn=0,1Itisclearthattheequation()hasnorootsForn2L.H.S()isdivisibleby4whileR.H.S()isntdivisible(byaboveproof1b).Hencethiscasethegivenhasnorootswhichmeansthe(n,m)=(2,1)isuniquesolutionofthegivenequation(q.e.d)

Leave a Reply

Your email address will not be published. Required fields are marked *