Menu Close

Given-lim-x-0-f-x-1-f-x-2-find-the-value-of-lim-x-0-f-x-




Question Number 110440 by bemath last updated on 29/Aug/20
Given lim_(x→0) (f(x)+(1/(f(x)))) = 2 , find the  value of lim_(x→0)  f(x).
Givenlimx0(f(x)+1f(x))=2,findthevalueoflimx0f(x).
Answered by john santu last updated on 29/Aug/20
 let g(x) = f(x)+(1/(f(x))) & lim_(x→0)  g(x)=2  ⇔ (f(x))^2 −f(x).g(x)+1 = 0  by quadratic formula  f(x) = ((g(x)±(√((g(x)^2 −4)))/2)  then lim_(x→0) f(x) = lim_(x→0) (((g(x)±(√((g(x)^2 −4)))/2))  = ((g(0)± (√((g(0)^2 −4)))/2) = ((2±(√(4−4)))/2) = 1
letg(x)=f(x)+1f(x)&limx0g(x)=2(f(x))2f(x).g(x)+1=0byquadraticformulaf(x)=g(x)±(g(x)242thenlimx0f(x)=limx0(g(x)±(g(x)242)=g(0)±(g(0)242=2±442=1
Commented by bemath last updated on 29/Aug/20

Leave a Reply

Your email address will not be published. Required fields are marked *