Menu Close

Given-log-2-10-a-a-1-log-3-5-1-b-find-the-value-of-1-log-12-15-




Question Number 120380 by bramlexs22 last updated on 31/Oct/20
Given  { ((log _2 (10)=(a/(a−1)))),((log _3 (5)=(1/b))) :}  find the value of 1+log _(12) (15) ?
Given{log2(10)=aa1log3(5)=1bfindthevalueof1+log12(15)?
Answered by FelipeLz last updated on 31/Oct/20
log_2  10 = 1+((ln 5)/(ln 2)) = (a/(a−1)) ⇒ ln 2 = (a−1)ln 5  log_3  5 = ((ln 5)/(ln 3)) = (1/b) ⇒ ln 3 = bln 5  1+log_(12)  15 = 1+((ln 3 + ln 5)/(ln 3 + 2ln 2)) = 1+((bln 5 + ln 5)/(bln 5 + 2(a−1)ln 5)) = 1+((b+1)/(b+2(a−1))) = ((2(a+b)−1)/(2(a−1)+b))
log210=1+ln5ln2=aa1ln2=(a1)ln5log35=ln5ln3=1bln3=bln51+log1215=1+ln3+ln5ln3+2ln2=1+bln5+ln5bln5+2(a1)ln5=1+b+1b+2(a1)=2(a+b)12(a1)+b
Answered by john santu last updated on 31/Oct/20
 { ((log _2 (5)+1 = (a/(a−1)) ⇒log _2 (5)=((a−a+1)/(a−1)) = (1/(a−1)))),((log _3 (5)=(1/b))) :}  ⇒1+((log _5 (3)+1)/(log _5 (3)+2log _5 (2))) = 1+((b+1)/(b+2a−2))  ⇒ ((2a+2b−1)/(2a+b−2))
{log2(5)+1=aa1log2(5)=aa+1a1=1a1log3(5)=1b1+log5(3)+1log5(3)+2log5(2)=1+b+1b+2a22a+2b12a+b2

Leave a Reply

Your email address will not be published. Required fields are marked *