Menu Close

Given-log-3-n-log-6-m-log-12-m-n-m-n-




Question Number 159762 by cortano last updated on 21/Nov/21
   Given log _3 (n)= log _6 (m)=log _(12) (m+n)     (m/n) = ?
Givenlog3(n)=log6(m)=log12(m+n)mn=?
Answered by bobhans last updated on 21/Nov/21
 log _3 (n)= k⇒n=3^k    log _6 (m)=k⇒m=6^k    log _(12) (m+n)=k⇒m+n=12^k    ⇒3^k +6^k =12^k  ; (m/n)=(6^k /3^k ) = 2^k   ⇒ ((1/4))^k +((1/2))^k = 1   ⇒(2^(−2k) )+(2^(−k) )=1 ; (2^(−k) )^2 +(2^(−k) )−1=0  ⇒2^(−k)  = ((−1+(√5))/2) ⇒2^k = (2/( (√5)−1))  ⇒ (m/n) = ((2((√5)+1))/4)= (((√5)+1)/2)
log3(n)=kn=3klog6(m)=km=6klog12(m+n)=km+n=12k3k+6k=12k;mn=6k3k=2k(14)k+(12)k=1(22k)+(2k)=1;(2k)2+(2k)1=02k=1+522k=251mn=2(5+1)4=5+12
Commented by Tony6400 last updated on 21/Nov/21
Commented by cortano last updated on 21/Nov/21
 2^k  > 0 for x∈R
2k>0forxR
Commented by cortano last updated on 21/Nov/21
 since log _3 (n) ⇒defined on n>0   so 3^k  > 0
sincelog3(n)definedonn>0so3k>0

Leave a Reply

Your email address will not be published. Required fields are marked *