Menu Close

Given-m-cos-sin-n-cos-sin-then-m-n-n-m-




Question Number 144727 by imjagoll last updated on 28/Jun/21
  Given  { ((m=cos θ−sin θ)),((n=cos θ+sin θ)) :}    then (√(m/n)) +(√(n/m)) = ?
Given{m=cosθsinθn=cosθ+sinθthenmn+nm=?
Answered by liberty last updated on 28/Jun/21
 ⇔(√(m/n))+(√(n/m))= ((m+n)/( (√(mn))))   { ((m^2 =cos^2 −sin 2θ+sin^2 θ)),((n^2 =cos^2 θ+sin 2θ+sin^2 θ)) :}   { ((m^2 =1−sin 2θ)),((n^2 =1+sin 2θ)) :}⇔m^2 +n^2 =2  ⇒(m+n)^2 −2mn=2  ⇒m+n=(√(2+2mn))  ⇒m.n=cos^2 θ−sin^2 θ=cos 2θ  then (√(m/n))+(√(n/m))=((√(2+2cos 2θ))/( (√(cos 2θ))))   = (√(2sec 2θ+2))
mn+nm=m+nmn{m2=cos2sin2θ+sin2θn2=cos2θ+sin2θ+sin2θ{m2=1sin2θn2=1+sin2θm2+n2=2(m+n)22mn=2m+n=2+2mnm.n=cos2θsin2θ=cos2θthenmn+nm=2+2cos2θcos2θ=2sec2θ+2
Commented by Rasheed.Sindhi last updated on 28/Jun/21
Typo sir!   { ((m^2 =1−sin 2θ)),((n^2 =1+sin 2θ)) :}⇔m^2 +n^2 =2
Typosir!{m2=1sin2θn2=1+sin2θm2+n2=2
Commented by liberty last updated on 28/Jun/21
yes sir. thank you
yessir.thankyou
Answered by Olaf_Thorendsen last updated on 28/Jun/21
m = cosθ−sinθ  n = cosθ+sinθ  x = (√(m/n))+(√(n/m))  x^2  = (m/n)+2+(n/m)  x^2  = ((m^2 +n^2 )/(mn))+2  x^2  = (((1−sin2θ)+(1+sin2θ))/(cos^2 θ−sin^2 θ))+2  x^2  = ((2+2cos2θ)/(cos2θ))  x^2  = ((4cos^2 θ)/(cos2θ))  x = ((2∣cosθ∣)/( (√(cos2θ))))
m=cosθsinθn=cosθ+sinθx=mn+nmx2=mn+2+nmx2=m2+n2mn+2x2=(1sin2θ)+(1+sin2θ)cos2θsin2θ+2x2=2+2cos2θcos2θx2=4cos2θcos2θx=2cosθcos2θ

Leave a Reply

Your email address will not be published. Required fields are marked *