Menu Close

Given-M-m-ij-t-a-real-square-matrix-with-t-R-Show-that-the-determinant-of-M-is-linear-function-affine-of-t-




Question Number 171343 by mathocean1 last updated on 13/Jun/22
Given M=(m_(ij) +t) a real square  matrix, with t∈R.  Show that the determinant of M  is linear function (affine) of t.
$${Given}\:{M}=\left({m}_{{ij}} +{t}\right)\:{a}\:{real}\:{square} \\ $$$${matrix},\:{with}\:{t}\in\mathbb{R}. \\ $$$${Show}\:{that}\:{the}\:{determinant}\:{of}\:{M} \\ $$$${is}\:{linear}\:{function}\:\left({affine}\right)\:{of}\:{t}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *